导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 搜索

    高级搜索

    搜索子版块
    保存设置 清除设置
    共 499 条结果匹配 "sensor",(耗时 0.02 秒)

    TypeError:'displacement' object is not iterable

    # Optical Flow Example
    #
    # Your OpenMV Cam can use optical flow to determine the displacement between
    # two images. This allows your OpenMV Cam to track movement like how your laser
    # mouse tracks movement. By tacking the difference between successive images
    # you can determine instaneous displacement with your OpenMV Cam too!
    
    import sensor, image, time
    
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
    sensor.set_framesize(sensor.B64x32) # or B40x30 or B64x64
    clock = time.clock() # Tracks FPS.
    
    # NOTE: The find_displacement function works by taking the 2D FFTs of the old
    # and new images and compares them using phase correlation. Your OpenMV Cam
    # only has enough memory to work on two 64x64 FFTs (or 128x32, 32x128, or etc).
    old = sensor.snapshot()
    
    while(True):
        clock.tick() # Track elapsed milliseconds between snapshots().
        img = sensor.snapshot() # Take a picture and return the image.
    
        [delta_x, delta_y, response] = old.find_displacement(img)
    
        old = img.copy()
    
        print("%0.1f X\t%0.1f Y\t%0.2f QoR\t%0.2f FPS" % \
            (delta_x, delta_y, response, clock.fps()))
    

    D
    发布在 OpenMV Cam

    openmv收数据的问题

    当openmv的串口没有收到数据时,为什么print函数一直现实的是一

    # Blob Detection and uart transport
    
    import sensor, image, time,pyb
    
    from pyb import UART
    
    import json
    
    # For color tracking to work really well you should ideally be in a very, very,
    
    # very, controlled enviroment where the lighting is constant...
    
    yellow_threshold   = (65, 100, -10, 6, 24, 51)
    
    # You may need to tweak the above settings for tracking green things...
    
    # Select an area in the Framebuffer to copy the color settings.
    
    
    
    #sensor.reset() # Initialize the camera sensor.
    
    #sensor.set_pixformat(sensor.RGB565) # use RGB565.
    
    #sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
    
    #sensor.skip_frames(10) # Let new settings take affect.
    
    #sensor.set_auto_whitebal(False) # turn this off.
    
    clock = time.clock() # Tracks FPS.
    
    led = pyb.LED(3) 
    
    uart = UART(3, 9600)
    
    i=0
    
    while(True):
        i=uart.readchar()
        b=int(uart.readchar())
        
        print(b) 
    
    

    0_1562721125494_捕获.PNG

    3
    发布在 OpenMV Cam

    彩色图转灰度图,图像显示出现莫名错误

    写程序时需要用到灰度图和彩色图,在初始化时设置RGB565,在后面需要用到灰度图时,不知道什么原因,串行端口打印的值感觉没啥问题(只是感觉),但是显示的图像出现问题。用示例代码进行测试如下:

    import sensor, image, time
    
    sensor.reset()                      # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
    sensor.skip_frames(time = 2000)     # Wait for settings take effect.
    clock = time.clock()                # Create a clock object to track the FPS.
    
    while(True):
        clock.tick()                    # Update the FPS clock.
        img = sensor.snapshot()         
        print(img.get_pixel(45,180)) 
        time.sleep(200)
        
        img = img.to_grayscale()
        print(img.get_pixel(45,180))              
        time.sleep(200)
    

    0_1562830183320_TIM图片20190711152920.jpg

    F
    发布在 OpenMV Cam

    颜色识别测距怎么在方框的旁边显示距离。不是通过串口打印。是直接显示在方框的旁边

    # Measure the distance
    
    #
    
    
    
    import sensor, image, time
    
    
    
    # For color tracking to work really well you should ideally be in a very, very,
    
    # very, controlled enviroment where the lighting is constant...
    
    yellow_threshold   = (12, 100, 30, 127, -39, 50)
    
    # You may need to tweak the above settings for tracking green things...
    
    # Select an area in the Framebuffer to copy the color settings.
    
    
    
    sensor.reset() # Initialize the camera sensor.
    
    sensor.set_pixformat(sensor.RGB565) # use RGB565.
    
    sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
    
    sensor.skip_frames(10) # Let new settings take affect.
    
    sensor.set_auto_whitebal(False) # turn this off.
    
    clock = time.clock() # Tracks FPS.
    
    
    
    K=1310#the value should be measured
    
    
    
    while(True):
    
        clock.tick() # Track elapsed milliseconds between snapshots().
    
        img = sensor.snapshot() # Take a picture and return the image.
    
    
    
        blobs = img.find_blobs([yellow_threshold])
    
        if len(blobs) == 1:
    
            # Draw a rect around the blob.
    
            b = blobs[0]
    
            img.draw_rectangle(b[0:4]) # rect
    
            img.draw_cross(b[5], b[6]) # cx, cy
    
            Lm = (b[2]+b[3])/2
    
            length = K/Lm
    
            print(length)
            print(b[5], b[6])
    

    S
    发布在 OpenMV Cam

    例程18 初始参数设置的疑问

    在如下四行代码中,对摄像头模块进行了初始参数设置
    “lens_mm = 2.8 # Standard Lens.
    lens_to_camera_mm = 22 # Standard Lens.
    sensor_w_mm = 3.984 # For OV7725 sensor - see datasheet.
    sensor_h_mm = 2.952 # For OV7725 sensor - see datasheet.”
    第一行代码是摄像头的焦距,而我使用的是后来配的一个长焦镜头,那么请问这个参数该怎么设置。第二行的参数没有看懂,是否使用一样的,还是和第一行一样,要根据自己的摄像头来设置。
    “
    h_fov = 2 * math.atan((sensor_w_mm / 2) / lens_mm)
    v_fov = 2 * math.atan((sensor_h_mm / 2) / lens_mm)
    ”
    这两行代码貌似使用了一开始设置的参数对距离进行了计算。

    发布在 OpenMV Cam

    串口通信

    # Blob Detection and uart transport
    import sensor, image, time
    from pyb import UART
    import json
    # For color tracking to work really well you should ideally be in a very, very,
    # very, controlled enviroment where the lighting is constant...
    yellow_threshold   = (65, 100, -10, 6, 24, 51)
    # You may need to tweak the above settings for tracking green things...
    # Select an area in the Framebuffer to copy the color settings.
    
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.RGB565) # use RGB565.
    sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
    sensor.skip_frames(10) # Let new settings take affect.
    sensor.set_auto_whitebal(False) # turn this off.
    clock = time.clock() # Tracks FPS.
    
    uart = UART(3, 115200)
    
    while(True):
        img = sensor.snapshot() # Take a picture and return the image.
    
        blobs = img.find_blobs([yellow_threshold])
        if blobs:
            print('sum :', len(blobs))
            output_str = json.dumps(blobs)
            for b in blobs:
                # Draw a rect around the blob.
                img.draw_rectangle(b.rect()) # rect
                img.draw_cross(b.cx(), b.cy()) # cx, cy
    
            print('you send:',output_str)
            uart.write(output_str+'\n')
        else:
            print('not found!')
    

    这个代码不能够显示

    L
    发布在 OpenMV Cam

    识别数字后的数据通过串口发送到电脑出现问题

    用识别数字例程识别数字,想将输出的数据经串口传送到电脑,代码如下

    import sensor, image, time
    from pyb import UART
    
    sensor.reset()                          # Reset and initialize the sensor.
    sensor.set_contrast(3)
    sensor.set_pixformat(sensor.GRAYSCALE)  # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.VGA)        # Set frame size to QVGA (320x240)
    sensor.set_windowing((128, 128))        # Set 128x128 window.
    sensor.skip_frames(time = 2000)         # Wait for settings take effect.
    sensor.set_auto_gain(False)
    sensor.set_auto_exposure(False)
    
    uart = UART(3, 115200)
    
    
    while(True):
        img = sensor.snapshot()
        # NOTE: Uncomment to detect dark numbers on white background
        # img.invert()
        out = img.find_number(roi=(img.width()//2-14, img.height()//2-14, 28, 28))
        img.draw_rectangle((img.width()//2-15, img.height()//2-15, 30, 30))
        if out[1] > 5: # Confidence level
            print("Number: %d Confidence: %0.2f" %(out[0], out[1]))
            
       uart.write(out[0]'\n')
      time.sleep(1000)
    

    发现串口部分代码不正确,但不知道要怎么改,求大神指点一二。

    L
    发布在 OpenMV Cam

    sensor.snapshot() 若是拍照不成功,或者摄像头出故障,返回什么值?

    0_1529724069659_snapshot返回值问题.png

    # Snapshot Example
    #
    # Note: You will need an SD card to run this example.
    #
    # You can use your OpenMV Cam to save image files.
    
    import sensor, image, pyb
    
    RED_LED_PIN = 1
    BLUE_LED_PIN = 3
    
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.RGB565) # or sensor.GRAYSCALE
    sensor.set_framesize(sensor.QVGA) # or sensor.QQVGA (or others)
    sensor.skip_frames(time = 2000) # Let new settings take affect.
    
    pyb.LED(RED_LED_PIN).on()
    sensor.skip_frames(time = 2000) # Give the user time to get ready.
    
    pyb.LED(RED_LED_PIN).off()
    pyb.LED(BLUE_LED_PIN).on()
    
    print("You're on camera!")
    img = sensor.snapshot()  
    print("img=",img)  #拍照成功返回img= {"w":320, "h":240, "type"="rgb565", #"size":153600},如果拍照不成功,或摄像头出故障,返回什么值,当摄像头出问题了我们怎么能知道?
    sensor.snapshot().save("example.jpg") # or "example.bmp" (or others)
    
    pyb.LED(BLUE_LED_PIN).off()
    #print("Done! Reset the camera to see the saved image.")
    
    

    S
    发布在 OpenMV Cam

    我按照lenet数字识别的视频教程一步步做的,但是总是会弹出这个错误,,我的是openmv4-H7,请问怎么解决?

    LetNet Example

    import sensor, image, time, os, nn

    sensor.reset() # Reset and initialize the sensor.
    sensor.set_contrast(3)
    sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
    sensor.set_windowing((128, 128)) # Set 128x128 window.
    sensor.skip_frames(time=100)
    sensor.set_auto_gain(False)
    sensor.set_auto_exposure(False)

    Load lenet network

    net = nn.load('/lenet.network')
    labels = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

    clock = time.clock() # Create a clock object to track the FPS.
    while(True):
    clock.tick() # Update the FPS clock.
    img = sensor.snapshot() # Take a picture and return the image.
    out = net.forward(img.copy().binary([(150, 255)], invert=True))
    max_idx = out.index(max(out))
    score = int(out[max_idx]*100)
    if (score < 70):
    score_str = "??:??%"
    else:
    score_str = "%s:%d%% "%(labels[max_idx], score)
    img.draw_string(0, 0, score_str)

    print(clock.fps())             # Note: OpenMV Cam runs about half as fast when connected
                                   # to the IDE. The FPS should increase once disconnected.
    

    0_1601778340985_11.png

    U
    发布在 OpenMV Cam

    录制MJPEG时,结束录制时主程序就必须停止吗?否则会报错?

    # MJPEG Video Recording Example
    #
    # Note: You will need an SD card to run this demo.
    #
    # You can use your OpenMV Cam to record mjpeg files. You can either feed the
    # recorder object JPEG frames or RGB565/Grayscale frames. Once you've finished
    # recording a Mjpeg file you can use VLC to play it. If you are on Ubuntu then
    # the built-in video player will work too.
    
    import sensor, image, time, mjpeg, pyb
    
    RED_LED_PIN = 1
    BLUE_LED_PIN = 3
    
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.RGB565) # or sensor.GRAYSCALE
    sensor.set_framesize(sensor.QVGA) # or sensor.QQVGA (or others)
    sensor.skip_frames(time = 2000) # Let new settings take affect.
    clock = time.clock() # Tracks FPS.
    
    pyb.LED(RED_LED_PIN).on()
    sensor.skip_frames(time = 2000) # Give the user time to get ready.
    
    pyb.LED(RED_LED_PIN).off()
    pyb.LED(BLUE_LED_PIN).on()
    
    m = mjpeg.Mjpeg("example.mjpeg")
    
    print("You're on camera!")
    while(True):
        for i in range(20):
            clock.tick()
            m.add_frame(sensor.snapshot())
            print(clock.fps())
        
        m.close(clock.fps())
        pyb.LED(BLUE_LED_PIN).off()
        print("Done! Reset the camera to see the saved recording.")
    

    M
    发布在 OpenMV Cam
    • 1
    • 2
    • 42
    • 43
    • 44
    • 45
    • 46
    • 49
    • 50
    • 44 / 50