导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 搜索

    高级搜索

    搜索子版块
    保存设置 清除设置
    共 499 条结果匹配 "sensor",(耗时 0.06 秒)

    为什么有线图传显示屏显示的画面会这么卡?帧缓冲区的画面都很流畅

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf,tv
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.SIF)      # Set frame size to QVGA (320x240)
    #sensor.set_windowing((240, 240))       # Set 240x240 window.
    #sensor.skip_frames(time=2000)          # Let the camera adjust.
    tv.init(triple_buffer=False) # Initialize the tv.
    tv.channel(8) # For wireless video transmitter shield
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
        tv.display(img)
        print(clock.fps(), "fps")
    

    M
    发布在 OpenMV Cam

    我分辨率试过降到最低,固件也升级到最新,为什么提示内存不够?

    0_1618885657014_fab33fa1-79ab-4759-98f0-6f53b2ca7aae-image.png

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
        print(clock.fps(), "fps")
    
    

    3
    发布在 OpenMV Cam

    EDGE生成的代码出现错误

    OSError: Arena size is too small for activation buffers. Needed 225840 but only 156272 was available怎么解决?

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QQVGA)      # Set frame size to QVGA (320x240)
    #sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
        print(clock.fps(), "fps")
    
    

    2
    发布在 OpenMV Cam

    自己根据官网操作训练了一个垃圾分类的代码,在opemv上运行,被提示配置内存错误,请降低图片识别率,这个问题如何解决

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
        print(clock.fps(), "fps")![0_1620558720938_QE6UF3PLPNUPB[X4]@X_0H4.png](https://fcdn.singtown.com/19884c9c-1911-498d-83e8-328570e1e469.png) 
    

    0_1620558874381_QE6UF3PLPNUPB[X4]@X_0H4.png

    U
    发布在 OpenMV Cam

    OSError:IErno 2] ENOENT

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
        print(clock.fps(), "fps")
    

    0_1621689711192_屏幕截图 2021-05-22 212129.jpg

    R
    发布在 OpenMV Cam

    OSError:A hard error occurred in the low level disk I/Olayer

    口罩识别报错

    # Edge Impulse - OpenMV Image Classification Example
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
    
            for i in range(len(predictions_list)):
                print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
        print(clock.fps(), "fps")
    

    0_1621926631432_QQ图片20210525151016.png

    6
    发布在 OpenMV Cam

    这样向STM32传输坐标信息,为什么STM32接受不到?

    # Blob Detection and uart transport
    import sensor, image, time
    from pyb import UART
    import json
    # For color tracking to work really well you should ideally be in a very, very,
    # very, controlled enviroment where the lighting is constant...
    red_threshold   = (9,47,17,45,-6,29)
    # You may need to tweak the above settings for tracking green things...
    # Select an area in the Framebuffer to copy the color settings.
    
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.RGB565) # use RGB565.
    sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
    sensor.skip_frames(10) # Let new settings take affect.
    sensor.set_auto_whitebal(False) # turn this off.
    clock = time.clock() # Tracks FPS.
    
    uart = UART(3, 115200)
    def find_max(blobs):
        max_size=0
        for blob in blobs:
            if blob.pixels() > max_size:
                max_blob=blob
                max_size = blob.pixels()
        return max_blob
    
    while(True):
        img = sensor.snapshot() # Take a picture and return the image.
    
        blobs = img.find_blobs([red_threshold])
        if blobs:
            max_blob=find_max(blobs)
            img.draw_rectangle(max_blob.rect())
            img.draw_cross(max_blob.cx(), max_blob.cy())
    
            output_str="(%d,%d)\r" % (max_blob.cx(),max_blob.cy())
            #output_str=json.dumps([max_blob.cx(),max_blob.cy()]) #方式2
    
            uart.write(output_str)
        time.sleep_ms(300)
    
    

    R
    发布在 OpenMV Cam

    关于神经训练的错误:如下图是怎么回事?

    Edge Impulse - OpenMV Image Classification Example

    import sensor, image, time, os, tf

    sensor.reset() # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240)) # Set 240x240 window.
    sensor.skip_frames(time=2000) # Let the camera adjust.

    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]

    clock = time.clock()
    while(True):
    clock.tick()

    img = sensor.snapshot()
    
    # default settings just do one detection... change them to search the image...
    for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
        print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
        img.draw_rectangle(obj.rect())
        # This combines the labels and confidence values into a list of tuples
        predictions_list = list(zip(labels, obj.output()))
    
        for i in range(len(predictions_list)):
            print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    
    print(clock.fps(), "fps")
    

    0_1624522878998_屏幕截图 2021-06-24 162108.jpg

    V
    发布在 OpenMV Cam

    使用串口通讯接受数据时,使用decode数据就没有了

    在stm32传输数据给openmv4 plus 时不使用decode函数能收到准确的ascii码,在使用后接收到的没有数据。

    
    import sensor, image, time
    from pyb import UART
    
    
    
    clock = time.clock() # Tracks FPS.
    uart = UART(3,115200)   #定义串口3变量
    #设置串口
    uart.init(115200, bits=8, parity=None, stop=0) # init with given parameters
    
    
    #图像循环
    while(True):
        if uart.any():
            a = uart.readline().decode()
            print(a)
        
    

    0_1627373391496_A_J(OCXRNLGOTY3{QI7.png

    
    import sensor, image, time
    from pyb import UART
    
    
    
    clock = time.clock() # Tracks FPS.
    uart = UART(3,115200)   #定义串口3变量
    #设置串口
    uart.init(115200, bits=8, parity=None, stop=0) # init with given parameters
    
    
    #图像循环
    while(True):
        if uart.any():
            a = uart.readline()
            print(a)
    
    

    0_1627373450764_1.png

    Q
    发布在 OpenMV Cam

    使用tflite识别数字,我要让识别度最高的数字识别出来要怎么改代码?

    0_1627789532636_1.png

    # Edge Impulse - OpenMV Image Classification Example
    
    只让这个识别度最高的1输出出来,要怎么改
    
    import sensor, image, time, os, tf
    
    sensor.reset()                         # Reset and initialize the sensor.
    sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
    sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
    sensor.set_windowing((240, 240))       # Set 240x240 window.
    sensor.skip_frames(time=2000)          # Let the camera adjust.
    
    net = "trained.tflite"
    labels = [line.rstrip('\n') for line in open("labels.txt")]
    
    clock = time.clock()
    while(True):
        clock.tick()
    
        img = sensor.snapshot()
    
        # default settings just do one detection... change them to search the image...
        for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
            print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
            img.draw_rectangle(obj.rect())
            # This combines the labels and confidence values into a list of tuples
            predictions_list = list(zip(labels, obj.output()))
        
            for i in range(len(predictions_list)):
                
         
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
    

    X
    发布在 OpenMV Cam
    • 1
    • 2
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 46 / 50