L
# Edge Impulse - OpenMV Image Classification Example
#
# This work is licensed under the MIT license.
# Copyright (c) 2013-2024 OpenMV LLC. All rights reserved.
# https://github.com/openmv/openmv/blob/master/LICENSE
import sensor, image, time, os, ml, uos, gc
from ulab import numpy as np
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
net = None
labels = None
try:
# load the model, alloc the model file on the heap if we have at least 64K free after loading
net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
except Exception as e:
print(e)
raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
try:
labels = [line.rstrip('\n') for line in open("labels.txt")]
except Exception as e:
raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot()
predictions_list = list(zip(labels, net.predict([img])[0].flatten().tolist()))
for i in range(len(predictions_list)):
print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
print(clock.fps(), "fps")