因为你代码写的不对。
可以运行的代码:
import sensor, image, time, os, tf, math, uos, gc, ustruct
from pyb import UART,LED
from image import SEARCH_EX, SEARCH_DS
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QQVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
sensor.set_contrast(1)
sensor.set_gainceiling(16)
net = None
labels = None
min_confidence = 0.5
rois = [(0,30,80,80),(70,30,85,85)]
try:
# load the model, alloc the model file on the heap if we have at least 64K free after loading
net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
except Exception as e:
raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
try:
labels = [line.rstrip('\n') for line in open("labels.txt")]
except Exception as e:
raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
colors = [ # Add more colors if you are detecting more than 7 types of classes at once.
(255, 0, 0),
( 0, 255, 0),
(255, 255, 0),
( 0, 0, 255),
(255, 0, 255),
( 0, 255, 255),
(255, 255, 255),
]
num = 0
while(True):
img = sensor.snapshot()
for roi in rois:
clock = time.clock()
for i, detection_list in enumerate(net.detect(img, roi=roi, thresholds=[(math.ceil(min_confidence * 255), 255)])):
if (i == 0): continue # background class
print(detection_list)
if (len(detection_list) == 0): continue # no detections for this class?
print(" %s " % labels[i])
tem = labels[i]
#print(tem)
num = 1
for d in detection_list:
[x, y, w, h] = d.rect()
center_x = math.floor(x + (w / 2))
center_y = math.floor(y + (h / 2))
print('x %d\ty %d' % (center_x, center_y))
img.draw_circle((center_x, center_y, 12), color=colors[i], thickness=2)
if (num != 0):break