• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 为什么自己训练的模型用的是net.classify,历程是tf.?net和labels都是none?



    • # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf, uos, gc
      from pyb import UART
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      uart = UART(3, 115200, timeout_char=1000)                         # i使用给定波特率初始化
      uart.init(115200, bits=8, parity=None, stop=1, timeout_char=1000) # 使用给定参数初始化
      
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              print(obj.output())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
              print(predictions_list)
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                  if predictions_list[0][1]>predictions_list[1][1]:
                      uart.write('1\r\n')
                  if predictions_list[0][1]<predictions_list[1][1]:
                      uart.write('2\r\n')
      
          print(clock.fps(), "fps")
      
      


    • 写代码的不是一个人,所以有点差别,但是差不多。具体函数看文档。。



    • @hqpz “net和labels都是none?”这句话我看不懂。



    • @kidswong999

      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      


    • @hqpz 代码没什么问题。写法不一样罢了,net和labels都在后面赋值,最前面的net = None
      labels = None,你删了问题也不大。

      不需要死扣这点事情,没意义。