net = None
labels = None
try:
# load the model, alloc the model file on the heap if we have at least 64K free after loading
net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
except Exception as e:
print(e)
raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
try:
labels = [line.rstrip('\n') for line in open("labels.txt")]
except Exception as e:
raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
H
hqpz
@hqpz
0
声望
3
楼层
567
资料浏览
0
粉丝
1
关注
hqpz 发布的帖子
-
RE: 为什么自己训练的模型用的是net.classify,历程是tf.?net和labels都是none?
-
为什么自己训练的模型用的是net.classify,历程是tf.?net和labels都是none?
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf, uos, gc from pyb import UART sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. uart = UART(3, 115200, timeout_char=1000) # i使用给定波特率初始化 uart.init(115200, bits=8, parity=None, stop=1, timeout_char=1000) # 使用给定参数初始化 net = None labels = None try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: print(e) raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) print(obj.output()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) print(predictions_list) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) if predictions_list[0][1]>predictions_list[1][1]: uart.write('1\r\n') if predictions_list[0][1]<predictions_list[1][1]: uart.write('2\r\n') print(clock.fps(), "fps")