Navigation

    • Login
    • Search
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. Home
    2. hqpz
    H
    • Flag Profile
    • Profile
    • Following
    • Followers
    • Blocks
    • Topics
    • Posts
    • Best
    • Groups

    hqpz

    @hqpz

    0
    Reputation
    2
    Posts
    7
    Profile views
    0
    Followers
    1
    Following
    Joined Last Online

    hqpz Follow

    Posts made by hqpz

    • 为什么自己训练的模型用的是net.classify,历程是tf.?net和labels都是none?
      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf, uos, gc
      from pyb import UART
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      uart = UART(3, 115200, timeout_char=1000)                         # i使用给定波特率初始化
      uart.init(115200, bits=8, parity=None, stop=1, timeout_char=1000) # 使用给定参数初始化
      
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              print(obj.output())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
              print(predictions_list)
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                  if predictions_list[0][1]>predictions_list[1][1]:
                      uart.write('1\r\n')
                  if predictions_list[0][1]<predictions_list[1][1]:
                      uart.write('2\r\n')
      
          print(clock.fps(), "fps")
      
      
      posted in OpenMV Cam
      H
      hqpz