导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. xms1
    3. 楼层
    X
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    xms1 发布的帖子

    • RE: 完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急

      下单了一个新的,谢谢官方您的回应我的·问题 ,我看升级固件的视频是很早之前的了,打开现在的固件升级DFU非常迷茫,不会使用,我的H7 PLUS 可以跑其他例子,但对于识别矩形的例子无法跑,怀疑是其他问题,固件通过常规升级到最新版本了已经,但仍然无法使用,可以再教教我。QQ:783885191

      发布在 星瞳AI视觉模组
      X
      xms1
    • RE: 完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急

      下单了一个新的,谢谢官方您的回应我的·问题 ,我看升级固件的视频是很早之前的了,打开现在的固件升级DFU非常迷茫,不会使用,我的H7 PLUS 可以跑其他例子,但对于识别矩形的例子无法跑,怀疑是其他问题,固件通过常规升级到最新版本了已经,但仍然无法使用,可以再教教我。QQ:783885191

      发布在 OpenMV Cam
      X
      xms1
    • 完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急
      import sensor
      import time
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)  # grayscale is faster (160x120 max on OpenMV-M7)
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time=2000)
      clock = time.clock()
      
      while True:
          clock.tick()
          img = sensor.snapshot()
      
          # `threshold` below should be set to a high enough value to filter out noise
          # rectangles detected in the image which have low edge magnitudes. Rectangles
          # have larger edge magnitudes the larger and more contrasty they are...
      
          for r in img.find_rects(threshold=10000):
              img.draw_rectangle(r.rect(), color=(255, 0, 0))
              for p in r.corners():
                  img.draw_circle(p[0], p[1], 5, color=(0, 255, 0))
              print(r)
      
          print("FPS %f" % clock.fps())
      ![0_1753865081557_f80c9b7d5d5f5a7c79c6936a36972db0.png](https://fcdn.singtown.com/3eb345af-757f-4ab1-a459-2bdef99695db.png) 
      
      发布在 星瞳AI视觉模组
      X
      xms1
    • 完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急
      # This work is licensed under the MIT license.
      # Copyright (c) 2013-2023 OpenMV LLC. All rights reserved.
      # https://github.com/openmv/openmv/blob/master/LICENSE
      #
      # Find Rects Example
      #
      # This example shows off how to find rectangles in the image using the quad threshold
      # detection code from our April Tags code. The quad threshold detection algorithm
      # detects rectangles in an extremely robust way and is much better than Hough
      # Transform based methods. For example, it can still detect rectangles even when lens
      # distortion causes those rectangles to look bent. Rounded rectangles are no problem!
      # (But, given this the code will also detect small radius circles too)...
      
      import sensor
      import time
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)  # grayscale is faster (160x120 max on OpenMV-M7)
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time=2000)
      clock = time.clock()
      
      while True:
          clock.tick()
          img = sensor.snapshot()
      
          # `threshold` below should be set to a high enough value to filter out noise
          # rectangles detected in the image which have low edge magnitudes. Rectangles
          # have larger edge magnitudes the larger and more contrasty they are...
      
          for r in img.find_rects(threshold=10000):
              img.draw_rectangle(r.rect(), color=(255, 0, 0))
              for p in r.corners():
                  img.draw_circle(p[0], p[1], 5, color=(0, 255, 0))
              print(r)
      
          print("FPS %f" % clock.fps())
      ![0_1753865002445_f80c9b7d5d5f5a7c79c6936a36972db0.png](https://fcdn.singtown.com/6deae4b7-2983-4d55-a411-4c8db9a0a1be.png) 
      
      发布在 OpenMV Cam
      X
      xms1