import sensor
import time
sensor.reset()
sensor.set_pixformat(sensor.RGB565) # grayscale is faster (160x120 max on OpenMV-M7)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time=2000)
clock = time.clock()
while True:
clock.tick()
img = sensor.snapshot()
# `threshold` below should be set to a high enough value to filter out noise
# rectangles detected in the image which have low edge magnitudes. Rectangles
# have larger edge magnitudes the larger and more contrasty they are...
for r in img.find_rects(threshold=10000):
img.draw_rectangle(r.rect(), color=(255, 0, 0))
for p in r.corners():
img.draw_circle(p[0], p[1], 5, color=(0, 255, 0))
print(r)
print("FPS %f" % clock.fps())

X
xms1
@xms1
0
声望
2
楼层
8
资料浏览
0
粉丝
0
关注
xms1 发布的帖子
-
完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急
-
完整情况为 插入USB线 闪绿灯 闪蓝灯 连接 不亮 开始跑例子 闪绿灯 断开 闪蓝灯 求求大佬们 现在真的很急
# This work is licensed under the MIT license. # Copyright (c) 2013-2023 OpenMV LLC. All rights reserved. # https://github.com/openmv/openmv/blob/master/LICENSE # # Find Rects Example # # This example shows off how to find rectangles in the image using the quad threshold # detection code from our April Tags code. The quad threshold detection algorithm # detects rectangles in an extremely robust way and is much better than Hough # Transform based methods. For example, it can still detect rectangles even when lens # distortion causes those rectangles to look bent. Rounded rectangles are no problem! # (But, given this the code will also detect small radius circles too)... import sensor import time sensor.reset() sensor.set_pixformat(sensor.RGB565) # grayscale is faster (160x120 max on OpenMV-M7) sensor.set_framesize(sensor.QQVGA) sensor.skip_frames(time=2000) clock = time.clock() while True: clock.tick() img = sensor.snapshot() # `threshold` below should be set to a high enough value to filter out noise # rectangles detected in the image which have low edge magnitudes. Rectangles # have larger edge magnitudes the larger and more contrasty they are... for r in img.find_rects(threshold=10000): img.draw_rectangle(r.rect(), color=(255, 0, 0)) for p in r.corners(): img.draw_circle(p[0], p[1], 5, color=(0, 255, 0)) print(r) print("FPS %f" % clock.fps()) 