import sensor, time, image, pyb
def face_fb():
while(True):
sensor.reset() # Initialize the camera sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
sensor.set_windowing((92,112))
sensor.skip_frames(10) # Let new settings take affect.
sensor.skip_frames(time = 5000) #等待5s
#SUB = "s1"
NUM_SUBJECTS = 3 #图像库中不同人数,一共6人
NUM_SUBJECTS_IMGS = 10 #每人有20张样本图片
# 拍摄当前人脸。
img = sensor.snapshot()
#img = image.Image("singtown/%s/1.pgm"%(SUB))
d0 = img.find_lbp((0, 0, img.width(), img.height()))
#d0为当前人脸的lbp特征
img = None
pmin = 999999
num=0
def min(pmin, a, s):
global num
if a<pmin:
pmin=a
num=s
return pmin
for s in range(1, NUM_SUBJECTS+1):
dist = 0
for i in range(2, NUM_SUBJECTS_IMGS+1):
img = image.Image("face/F%d/%d.pgm"%(s, i))
d1 = img.find_lbp((0, 0, img.width(), img.height()))
#d1为第s文件夹中的第i张图片的lbp特征
dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
print("Average dist for subject %d: %d"%(s, dist/NUM_SUBJECTS_IMGS))
pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。
#print(pmin)
print(num) # num为当前最匹配的人的编号。
face_fb()
wip3 发布的帖子
-
我将这个程序封装成函数并在下方调用函数但得到的值却一直没变一直是初始值0,我把函数解除后,进行里面的循环得到的值又对的
-
云台人脸追踪效果巨差
import sensor, image, time
from pid import PID
from pyb import Servopan_servo=Servo(1)
tilt_servo=Servo(2)#pan_servo.calibration(500,2500,500)
#tilt_servo.calibration(500,2500,500)#red_threshold = (13, 49, 18, 61, 6, 47)
pan_pid = PID(p=0.17, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
tilt_pid = PID(p=0.085, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
#pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
#tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PIDsensor.reset() # Initialize the camera sensor.
sensor.set_contrast(3)
sensor.set_gainceiling(16)
sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
sensor.set_framesize(sensor.B160X160) # use QQVGA for speed.
sensor.set_vflip(True)
sensor.skip_frames(10) # Let new settings take affect.
sensor.set_auto_whitebal(False) # turn this off.降低环境因素的影响
sensor.set_auto_gain(True) # 开启自动增益
sensor.set_auto_exposure(True) # 开启自动曝光clock = time.clock() # Tracks FPS.
face_cascade = image.HaarCascade("frontalface", stages=25)
def find_max(blobs):
max_size=0
for blob in blobs:
if blob[2]*blob[3] > max_size:
max_blob=blob
max_size = blob[2]*blob[3]
return max_blobwhile(True):
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # Take a picture and return the image.blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35) if blobs: max_blob = find_max(blobs) pan_error = max_blob[0]+max_blob[2]/2-img.width()/2 tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2 print("pan_error: ", pan_error) img.draw_rectangle(max_blob) # rect img.draw_cross(int(max_blob[0]+max_blob[2]/2),int(max_blob[1]+max_blob[3]/2)) # cx, cy pan_output=pan_pid.get_pid(pan_error,1)/2 tilt_output=tilt_pid.get_pid(tilt_error,1) print("pan_output",pan_output) pan_servo.angle(pan_servo.angle()+pan_output) tilt_servo.angle(tilt_servo.angle()-tilt_output)
粘贴代码