导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. wip3
    W
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    wip3

    @wip3

    0
    声望
    3
    楼层
    637
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    wip3 关注

    wip3 发布的帖子

    • 我将这个程序封装成函数并在下方调用函数但得到的值却一直没变一直是初始值0,我把函数解除后,进行里面的循环得到的值又对的

      0_1668748493377_屏幕截图 2022-11-18 131440.png

      import sensor, time, image, pyb  
      def face_fb():
          while(True):
              sensor.reset() # Initialize the camera sensor.
              sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
              sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
              sensor.set_windowing((92,112))
              sensor.skip_frames(10) # Let new settings take affect.
              sensor.skip_frames(time = 5000) #等待5s
              
              
              
              #SUB = "s1"
              NUM_SUBJECTS = 3 #图像库中不同人数,一共6人
              NUM_SUBJECTS_IMGS = 10 #每人有20张样本图片
              
              # 拍摄当前人脸。
              img = sensor.snapshot()
              #img = image.Image("singtown/%s/1.pgm"%(SUB))
              d0 = img.find_lbp((0, 0, img.width(), img.height()))
              #d0为当前人脸的lbp特征
              img = None
              pmin = 999999
              num=0
              
              def min(pmin, a, s):
                  global num
                  if a<pmin:
                      pmin=a
                      num=s
                  return pmin
              
              for s in range(1, NUM_SUBJECTS+1):
                  dist = 0
                  for i in range(2, NUM_SUBJECTS_IMGS+1):
                      img = image.Image("face/F%d/%d.pgm"%(s, i))
                      d1 = img.find_lbp((0, 0, img.width(), img.height()))
                      #d1为第s文件夹中的第i张图片的lbp特征
                      dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
                  print("Average dist for subject %d: %d"%(s, dist/NUM_SUBJECTS_IMGS))
                  pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。
                  #print(pmin)
              
              print(num) # num为当前最匹配的人的编号。
      face_fb()
      
      发布在 OpenMV Cam
      W
      wip3
    • 云台人脸追踪效果巨差

      import sensor, image, time

      from pid import PID
      from pyb import Servo

      pan_servo=Servo(1)
      tilt_servo=Servo(2)

      #pan_servo.calibration(500,2500,500)
      #tilt_servo.calibration(500,2500,500)

      #red_threshold = (13, 49, 18, 61, 6, 47)

      pan_pid = PID(p=0.17, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.085, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID

      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.GRAYSCALE) # use RGB565.
      sensor.set_framesize(sensor.B160X160) # use QQVGA for speed.
      sensor.set_vflip(True)
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.

      降低环境因素的影响

      sensor.set_auto_gain(True) # 开启自动增益
      sensor.set_auto_exposure(True) # 开启自动曝光

      clock = time.clock() # Tracks FPS.

      face_cascade = image.HaarCascade("frontalface", stages=25)
      def find_max(blobs):
      max_size=0
      for blob in blobs:
      if blob[2]*blob[3] > max_size:
      max_blob=blob
      max_size = blob[2]*blob[3]
      return max_blob

      while(True):
      clock.tick() # Track elapsed milliseconds between snapshots().
      img = sensor.snapshot() # Take a picture and return the image.

      blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
      if blobs:
          max_blob = find_max(blobs)
          pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
          tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
      
          print("pan_error: ", pan_error)
      
          img.draw_rectangle(max_blob) # rect
          img.draw_cross(int(max_blob[0]+max_blob[2]/2),int(max_blob[1]+max_blob[3]/2)) # cx, cy
      
          pan_output=pan_pid.get_pid(pan_error,1)/2
          tilt_output=tilt_pid.get_pid(tilt_error,1)
          print("pan_output",pan_output)
          pan_servo.angle(pan_servo.angle()+pan_output)
          tilt_servo.angle(tilt_servo.angle()-tilt_output)
      

      粘贴代码

      发布在 OpenMV Cam
      W
      wip3