导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 2nc3
    3. 楼层
    2
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    2nc3 发布的帖子

    • RE: 数据接收问题,怎么办

      可以收到
      1
      1
      1
      1

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 数据接收问题,怎么办

      0_1658068677719_b9a48104-1e01-4d35-bc30-b3815d054ba6-image.png
      这是发送端

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 数据接收问题,怎么办

      打印a那是有空格的

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 数据接收问题,怎么办

      不对
      enable_lens_corr = False # turn on for straighter lines...

      import sensor, image, time, pyb, math
      import os, tf
      from machine import UART
      from pyb import LED
      from struct import pack

      white=LED(4)
      uart = UART(2, 115200)
      sensor.reset()
      sensor.set_auto_gain(False) # must be turned off for color tracking
      sensor.set_auto_whitebal(False) # must be turned off for color tracking
      #sensor.set_auto_whitebal(False)
      sensor.set_pixformat(sensor.RGB565) # 灰度更快(160x120 max on OpenMV-M7)
      sensor.set_framesize(sensor.QVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      thresholds=(30, 65, -27, 47, -15, 33)
      #Large_area=[76,22,210,122]
      net_path = "mobilenet_v2-2022-06-29T03-44-15.608Z_in-int8_out-int8_channel_ptq.tflite" # 定义模型的路径
      labels = [line.rstrip() for line in open("/sd/labels_animal_fruits_traffic.txt")] # 加载标签
      net = tf.load(net_path, load_to_fb=True) # 加载模型

      min_degree = 70
      max_degree = 110

      #点到直线距离公式
      def get_point_line_distance(point, p0, p1):
      point_x = point[0]
      point_y = point[1]
      line_s_x, line_s_y=p0
      line_e_x, line_e_y=p1
      #若直线与y轴平行,则距离为点的x坐标与直线上任意一点的x坐标差值的绝对值
      if line_e_x - line_s_x == 0:
      return math.fabs(point_x - line_s_x)
      #若直线与x轴平行,则距离为点的y坐标与直线上任意一点的y坐标差值的绝对值
      if line_e_y - line_s_y == 0:
      return math.fabs(point_y - line_s_y)
      #斜率
      k = (line_e_y - line_s_y) / (line_e_x - line_s_x)
      #截距
      b = line_s_y - k * line_s_x
      #带入公式得到距离dis
      dis = math.fabs(k * point_x - point_y + b) / math.pow(k * k + 1, 0.5)
      return dis
      #两点长度计算
      def get_point_point_distance(p0, p1):
      line_s_x, line_s_y=p0
      line_e_x, line_e_y=p1
      line_long = math.sqrt(pow(line_s_x-line_e_x,2)+pow(line_s_y-line_e_y,2))
      return line_long

      while(True):
      clock.tick()
      img = sensor.snapshot().lens_corr(1.8)
      white.on()
      uart_str = uart.read(uart.any()).decode().strip()
      print(uart_str)
      if(uart_str=='1'):
      print("a")
      print("...........")

      这样我仍然无法打印a

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 如何画一条线并返回他的角度

      但是我是想认为创建一条直线,比如色块中线之类,画的直线无法使用函数返回他的角度

      发布在 OpenMV Cam
      2
      2nc3
    • 如何画一条线并返回他的角度

      比如说我识别到了一个矩形,用它四个角的坐标划出一条中线,在返回直线角度,我该用那些函数

      发布在 OpenMV Cam
      2
      2nc3
    • 数据接收问题,怎么办
      # Hello World Example
      #
      # Welcome to the OpenMV IDE! Click on the green run arrow button below to run the script!
      
      import sensor, image, time, math
      from machine import UART
      
      uart = UART(2, baudrate=115200)
      sensor.reset()                      # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
      sensor.skip_frames(time = 2000)     # Wait for settings take effect.
      clock = time.clock()                # Create a clock object to track the FPS.
      thresholds = (64, 81)
      
      while(True):
          clock.tick()                    # Update the FPS clock.
          img = sensor.snapshot()         # Take a picture and return the image.
          uart_num = uart.any()      # 获取当前串口数据数量
          if(uart_num):
              uart_str = uart.read(uart_num).decode().strip() # 读取串口数据
              print(uart_str) 
              if(uart_str==3):
                 print("lllll")
                 for blob in img.find_blobs([thresholds], pixels_threshold=100, area_threshold=100, merge=True):
                     # These values depend on the blob not being circular - otherwise they will be shaky.
                     if blob.elongation() > 0.5:
                        img.draw_edges(blob.min_corners(), color=0)
                        img.draw_line(blob.major_axis_line(), color=0)
                        img.draw_line(blob.minor_axis_line(), color=0)
                        # These values are stable all the time.
                     img.draw_rectangle(blob.rect(), color=127)
                     if blob.cy()>110   and blob.cx()<200 and blob.cx()> 160 and blob.cy()<  130:
                        uart.write("t")
                        print("t")
                     elif blob.cy()< 110  and blob.cx()> 160 and blob.cx() < 200:
                        uart.write("h")
                        print("q")
                     elif blob.cy()> 130 and blob.cx()<200 and blob.cx()> 160:
                        uart.write("q")
                        print("h")
                     elif blob.cx()<160:
                        uart.write("y")
                        print("z")
                     elif blob.cx() > 200:
                        uart.write("z")
                        print("y")
      

      等于3判定不通过
      接受的是
      3
      3
      3
      3
      3
      3
      这样的

      发布在 OpenMV Cam
      2
      2nc3
    • tag码识别有误差,偏转角度时

      我选择性的求了x,z的k,当摄像头与tag码平行时误差可以接受,但tag码偏转角度时,测量误差就太大了。想问一下z,x的距离是摄像头到tag码中心的距离吗,当偏转时是要再加入角度进行计算吗?

      import sensor, image, time, math
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)
      sensor.set_framesize(sensor.QQVGA) # 如果分辨率大得多,内存就不够用了……
      sensor.skip_frames(time = 2000)
      sensor.set_auto_gain(False)  # 必须关闭此功能,以防止图像冲洗…
      sensor.set_auto_whitebal(False)  # 必须关闭此功能,以防止图像冲洗…
      clock = time.clock()
      
      # 注意!与find_qrcodes不同,find_apriltags方法不需要对镜像进行镜头校正。
      
      #标签系列有什么区别? 那么,例如,TAG16H5家族实际上是一个4x4的方形标签。
      #所以,这意味着可以看到比6x6的TAG36H11标签更长的距离。
      #然而,较低的H值(H5对H11),意味着4x4标签的假阳性率远高于6x6标签。
      #所以,除非你有理由使用其他标签系列,否则使用默认族TAG36H11。
      
      
      # AprilTags库输出标签的姿势信息。 这是x / y / z平移和x / y / z旋转。
      # x / y / z旋转以弧度表示,可以转换为度数。 至于翻译单位是无量纲的,
      # 你必须应用一个转换函数。
      
      # f_x是相机的x焦距。它应该等于以mm为单位的镜头焦距除以x传感器尺寸(以mm为单位)乘以图像中的像素数。
      # 以下数值适用于配备2.8毫米镜头的OV7725相机。
      
      # f_y是相机的y焦距。它应该等于以mm为单位的镜头焦距除以y传感器尺寸(以mm为单位)乘以图像中的像素数。
      # 以下数值适用于配备2.8毫米镜头的OV7725相机。
      
      # c_x是以像素为单位的图像x中心位置
      # c_x是以像素为单位的图像x中心位置
      
      f_x = (2.8 / 3.984) * 160 # find_apriltags 如果没有设置,则默认为这个
      f_y = (2.8 / 2.952) * 120 # find_apriltags 如果没有设置,则默认为这个
      c_x = 160 * 0.5 # find_apriltags 如果没有设置,则默认为这个 (the image.w * 0.5)
      c_y = 120 * 0.5 # find_apriltags 如果没有设置,则默认为这个 (the image.h * 0.5)
      k_z=-5.97
      k_x=11.159
      
      def degrees(radians):
          return (180 * radians) / math.pi
      
      while(True):
          clock.tick()
          img = sensor.snapshot()
          for tag in img.find_apriltags(families=image.TAG25H9,fx=f_x, fy=f_y, cx=c_x, cy=c_y): # 默认为 TAG36H11
              img.draw_rectangle(tag.rect(), color = (255, 0, 0))
              img.draw_cross(tag.cx(), tag.cy(), color = (0, 255, 0))
              print_args = (tag.x_translation(), tag.y_translation(), tag.z_translation(), \
                  degrees(tag.x_rotation()), degrees(tag.y_rotation()), degrees(tag.z_rotation()))
              # 变换单位不详。旋转单位是度数。
              #print("Tx: %f, Ty %f, Tz %f, Rx %f, Ry %f, Rz %f" % print_args)
              print(tag.id(),"x:",k_x*tag.x_translation(),"   z:",k_z*tag.z_translation())
          print(clock.fps())
      
      发布在 OpenMV Cam
      2
      2nc3
    • RE: 我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],
      import sensor, image, time, pyb
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.8)
      
          # Circle objects have four values: x, y, r (radius), and magnitude. The
          # magnitude is the strength of the detection of the circle. Higher is
          # better...
      
          # `threshold` controls how many circles are found. Increase its value
          # to decrease the number of circles detected...
      
          # `x_margin`, `y_margin`, and `r_margin` control the merging of similar
          # circles in the x, y, and r (radius) directions.
      
          # r_min, r_max, and r_step control what radiuses of circles are tested.
          # Shrinking the number of tested circle radiuses yields a big performance boost.
      
          for circles in img.find_circles(threshold = 2000, x_margin = 10, y_margin = 10, r_margin = 10,
                  r_min = 2, r_max = 100, r_step = 2):
              img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))
              c0=circles[0].x()
              print(c0)
      
      最后就会显示AttributeError: 'int' object has no attribute 'x'
      发布在 OpenMV Cam
      2
      2nc3
    • RE: 我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],

      0_1654235313611_-6e5778aa2fdc1949.png
      像这样

      发布在 OpenMV Cam
      2
      2nc3
    • 我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],

      是这样的,但我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],这怎样解决

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 如何将识别的坐标,逐个输出?

      我的意思是将c.x内的坐标分别赋值给不同的变量,将x1,x2,x3等等单独列出来

      发布在 OpenMV Cam
      2
      2nc3
    • 如何将识别的坐标,逐个输出?

      如识别圆,将c.x的值单独赋给一个变量

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 我可以在while内再进行roi的设置吗

      同时,若果可以这么设置,那再新的roi区域里,识别到的新的圆形坐标是相对于整个图像的像素坐标还是相对于新的roi区域坐标的

      发布在 OpenMV Cam
      2
      2nc3
    • 我可以在while内再进行roi的设置吗

      本意是识别矩形中的圆,在识别到矩形后,根据矩形的数据设置roi,再在新的roi范围内识别圆形可以吗?

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 串口输出坐标,为什么会失败

      就是有没有办法将遍历出来的圆的中心坐标一个个地表示出来,

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 串口输出坐标,为什么会失败

      说错了,用的是三

      发布在 OpenMV Cam
      2
      2nc3
    • RE: 串口输出坐标,为什么会失败

      改成串口2了,那再怎么版

      发布在 OpenMV Cam
      2
      2nc3
    • 串口输出坐标,为什么会失败
      import sensor, image, time
      from machine import UART
      
      uart = UART(2, baudrate=115200) 
      uart_num = 0   
      uart_array = [48,49,50,51,52,53,54,55,56,57]
      uart.write(uart_num.to_bytes(1, 'little')) 
      uart.write(bytearray(uart_array))
      uart.write(bytearray([0x41]))       # 发送一个十六进制数据
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      while(True):
          uart_num = uart.any()
          clock.tick()
          img = sensor.snapshot().lens_corr(1.8)
      
          # Circle objects have four values: x, y, r (radius), and magnitude. The
          # magnitude is the strength of the detection of the circle. Higher is
          # better...
      
          # `threshold` controls how many circles are found. Increase its value
          # to decrease the number of circles detected...
      
          # `x_margin`, `y_margin`, and `r_margin` control the merging of similar
          # circles in the x, y, and r (radius) directions.
      
          # r_min, r_max, and r_step control what radiuses of circles are tested.
          # Shrinking the number of tested circle radiuses yields a big performance boost.
      
          for c in img.find_circles(threshold = 2000, x_margin = 10, y_margin = 10, r_margin = 10,
                  r_min = 2, r_max = 100, r_step = 2):
              img.draw_circle(c.x(), c.y())
          if(uart_num):
              uart_str = uart.read(uart_num)
              uart.write(uart_str)
      
      发布在 OpenMV Cam
      2
      2nc3
    • 怎样避开json实现传出多个圆坐标
      from machine import UART
      import json, sensor, image, time
      
      uart = UART(2, baudrate=115200)
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.8)
      
          # Circle objects have four values: x, y, r (radius), and magnitude. The
          # magnitude is the strength of the detection of the circle. Higher is
          # better...
      
          # `threshold` controls how many circles are found. Increase its value
          # to decrease the number of circles detected...
      
          # `x_margin`, `y_margin`, and `r_margin` control the merging of similar
          # circles in the x, y, and r (radius) directions.
      
          # r_min, r_max, and r_step control what radiuses of circles are tested.
          # Shrinking the number of tested circle radiuses yields a big performance boost.
          circles = img.find_circles(threshold = 2000, x_margin = 10, y_margin = 10, r_margin = 10,
                  r_min = 2, r_max = 100, r_step = 2)
          uart.write("111")
          if circles:
              print('sum :', len(circles))
              output_str = json.dumps(circles)
              for c in circles:
                 img.draw_circle(c.x(), c.y())
              print('you send:',output_str)
              uart.write(output_str+'\n')
      
      发布在 OpenMV Cam
      2
      2nc3