• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 神经网络模型导入openmv后运行帧数很低是为什么应该怎么解决?



    • 我将edgeimpluse网站中训练的神经网络模型导出到openmv后不修改任何代码帧率只有2帧多,加上输出高低电平信号更是只有零点几帧了,换了高速快门模块也没有任何改善,想请问下是什么原因要怎么办呢?

      # Edge Impulse - OpenMV Image Classification Example
      
      import sensor, image, time, os, tf, uos, gc, pyb
      from pyb import LED, Pin
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.WVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = None
      labels = None
      fish = ""
      gl = 0
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      while(True):
          clock.tick()
      
          img = sensor.snapshot()
      
          # default settings just do one detection... change them to search the image...
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
              fish = predictions_list[0][0]
              gl = predictions_list[0][1]
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                  if predictions_list[i][1]>gl:
                      fish = predictions_list[i][0]
                      gl = predictions_list[i][1]
                  else:
                      fish = fish
                      gl = gl
              print("result:%s" % fish)
              if fish == predictions_list[0][0]:
                  led = LED(1) # 红led
                  led.toggle()
                  led.on()#亮
                  p_out = Pin('P5', Pin.OUT_PP)#设置p_out为输出引脚
                  p_out.high()#设置p_out引脚为高
                  pyb.delay(1000)
                  p_out.low()#设置p_out引脚为低
                  led.off()#灭
              elif fish == predictions_list[1][0]:
                  led = LED(2) # 绿led
                  led.toggle()
                  led.on()#亮
                  p_out = Pin('P6', Pin.OUT_PP)#设置p_out为输出引脚
                  p_out.high()#设置p_out引脚为高
                  pyb.delay(1000)
                  p_out.low()#设置p_out引脚为低
                  led.off()#灭
              elif fish == predictions_list[2][0]:
                  led = LED(3) # 蓝led
                  led.toggle()
                  led.on()#亮
                  p_out = Pin('P7', Pin.OUT_PP)#设置p_out为输出引脚
                  p_out.high()#设置p_out引脚为高
                  pyb.delay(1000)
                  p_out.low()#设置p_out引脚为低
                  led.off()#灭
              else:
                  led = LED(4) # 红外led
                  led.toggle()
                  led.on()#亮
                  p_out = Pin('P8', Pin.OUT_PP)#设置p_out为输出引脚
                  p_out.high()#设置p_out引脚为高
                  pyb.delay(1000)
                  p_out.low()#设置p_out引脚为低
                  led.off()#灭
          print(clock.fps(), "fps")
      
      


    • 把pyb.delay删掉。