我将edgeimpluse网站中训练的神经网络模型导出到openmv后不修改任何代码帧率只有2帧多,加上输出高低电平信号更是只有零点几帧了,换了高速快门模块也没有任何改善,想请问下是什么原因要怎么办呢?
# Edge Impulse - OpenMV Image Classification Example
import sensor, image, time, os, tf, uos, gc, pyb
from pyb import LED, Pin
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.WVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
net = None
labels = None
fish = ""
gl = 0
try:
# load the model, alloc the model file on the heap if we have at least 64K free after loading
net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
except Exception as e:
print(e)
raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
try:
labels = [line.rstrip('\n') for line in open("labels.txt")]
except Exception as e:
raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot()
# default settings just do one detection... change them to search the image...
for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
img.draw_rectangle(obj.rect())
# This combines the labels and confidence values into a list of tuples
predictions_list = list(zip(labels, obj.output()))
fish = predictions_list[0][0]
gl = predictions_list[0][1]
for i in range(len(predictions_list)):
print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
if predictions_list[i][1]>gl:
fish = predictions_list[i][0]
gl = predictions_list[i][1]
else:
fish = fish
gl = gl
print("result:%s" % fish)
if fish == predictions_list[0][0]:
led = LED(1) # 红led
led.toggle()
led.on()#亮
p_out = Pin('P5', Pin.OUT_PP)#设置p_out为输出引脚
p_out.high()#设置p_out引脚为高
pyb.delay(1000)
p_out.low()#设置p_out引脚为低
led.off()#灭
elif fish == predictions_list[1][0]:
led = LED(2) # 绿led
led.toggle()
led.on()#亮
p_out = Pin('P6', Pin.OUT_PP)#设置p_out为输出引脚
p_out.high()#设置p_out引脚为高
pyb.delay(1000)
p_out.low()#设置p_out引脚为低
led.off()#灭
elif fish == predictions_list[2][0]:
led = LED(3) # 蓝led
led.toggle()
led.on()#亮
p_out = Pin('P7', Pin.OUT_PP)#设置p_out为输出引脚
p_out.high()#设置p_out引脚为高
pyb.delay(1000)
p_out.low()#设置p_out引脚为低
led.off()#灭
else:
led = LED(4) # 红外led
led.toggle()
led.on()#亮
p_out = Pin('P8', Pin.OUT_PP)#设置p_out为输出引脚
p_out.high()#设置p_out引脚为高
pyb.delay(1000)
p_out.low()#设置p_out引脚为低
led.off()#灭
print(clock.fps(), "fps")