神经网络模型导入openmv后运行帧数很低是为什么应该怎么解决?
-
我将edgeimpluse网站中训练的神经网络模型导出到openmv后不修改任何代码帧率只有2帧多,加上输出高低电平信号更是只有零点几帧了,换了高速快门模块也没有任何改善,想请问下是什么原因要怎么办呢?
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf, uos, gc, pyb from pyb import LED, Pin sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.WVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = None labels = None fish = "" gl = 0 try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: print(e) raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) fish = predictions_list[0][0] gl = predictions_list[0][1] for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) if predictions_list[i][1]>gl: fish = predictions_list[i][0] gl = predictions_list[i][1] else: fish = fish gl = gl print("result:%s" % fish) if fish == predictions_list[0][0]: led = LED(1) # 红led led.toggle() led.on()#亮 p_out = Pin('P5', Pin.OUT_PP)#设置p_out为输出引脚 p_out.high()#设置p_out引脚为高 pyb.delay(1000) p_out.low()#设置p_out引脚为低 led.off()#灭 elif fish == predictions_list[1][0]: led = LED(2) # 绿led led.toggle() led.on()#亮 p_out = Pin('P6', Pin.OUT_PP)#设置p_out为输出引脚 p_out.high()#设置p_out引脚为高 pyb.delay(1000) p_out.low()#设置p_out引脚为低 led.off()#灭 elif fish == predictions_list[2][0]: led = LED(3) # 蓝led led.toggle() led.on()#亮 p_out = Pin('P7', Pin.OUT_PP)#设置p_out为输出引脚 p_out.high()#设置p_out引脚为高 pyb.delay(1000) p_out.low()#设置p_out引脚为低 led.off()#灭 else: led = LED(4) # 红外led led.toggle() led.on()#亮 p_out = Pin('P8', Pin.OUT_PP)#设置p_out为输出引脚 p_out.high()#设置p_out引脚为高 pyb.delay(1000) p_out.low()#设置p_out引脚为低 led.off()#灭 print(clock.fps(), "fps")
-
把pyb.delay删掉。