• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 大佬,想问一下怎么在代码层面提高物品识别的精度啊,硬件这边神经网络样例拍了一千多个了。



    • import sensor, image, time, os, tf, math, uos, gc,pyb
      from pyb import UART
      from pyb import LED
      red_led = LED(1)
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)
      sensor.set_framesize(sensor.QVGA)
      sensor.set_windowing((240, 240))
      sensor.skip_frames(time=2000)
      uart = UART(3, 9600)
      net = None
      labels = None
      min_confidence = 0.92
      try:
      net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
      raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      try:
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
      raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      colors = [
      (255, 0, 0),
      ( 0, 255, 0),
      (255, 255, 0),
      ( 0, 0, 255),
      (255, 0, 255),
      ( 0, 255, 255),
      (255, 255, 255),
      ]
      r=0
      a=0
      count=0
      b=0
      t=0
      flag=0
      A=C=D=E=H=I=J=K=L=M=N=O=0
      clock = time.clock()
      while(True):
      img = sensor.snapshot()
      if uart.any():
      red_led.on()
      time.sleep_ms(500)
      red_led.off()
      A=C=D=E=H=I=J=K=L=M=N=O=0
      start = pyb.millis()
      count=0
      m=uart.read(1).decode()
      if m!='o':
      a=int(m)

          while( count <=6 ):
              detected = True
              img = sensor.snapshot()
              if pyb.millis() - start>5000:
                  uart.write("d")
                  count=7
              for i, detection_list in enumerate(net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])):
      
                  if (i == 0):
      
                      continue
      
                  if (len(detection_list) == 0):
      
                      continue
      
      
                  print("********** %s **********" % labels[i])
                  for d in detection_list:
                      [x, y, w, h] = d.rect()
                      center_x = math.floor(x + (w / 2))
                      center_y = math.floor(y + (h / 2))
                      print('x %d\ty %d' % (center_x, center_y))
                  if center_y>100:
                      if labels[i]=="旺仔" :
                          if center_x<=60:
                              A=A+1
                          elif center_x>60 and center_x<=165:
                              C=C+1
                          else:
                              D=D+1
                      if labels[i]=="王老吉" :
                          if center_x<=60:
                              E=E+1
                          elif center_x>60 and center_x<=165:
                              H=H+1
                          else:
                              I=I+1
                      if labels[i]=="雪花" :
                          if center_x<=60:
                              J=J+1
                          elif center_x>60 and center_x<=165:
                              K=K+1
                          else:
                              L=L+1
                      if labels[i]=="AD" :
                          if center_x<=60:
                              M=M+1
                          elif center_x>60 and center_x<=165:
                              N=N+1
                          else:
                              O=O+1
                      count=count+1
              #if detected:
              #    flag=1
              #if flag==1:
              #    uart.write("d")
              #    flag=0
          list=[A,C,D,E,H,I,J,K,L,M,N,O]
          Z=max(list)
          if Z<=3 and Z>0 :
      
              uart.write("d")
              A=C=D=E=H=I=J=K=L=M=N=O=0
      
          elif Z>3:
              if A==Z :
                  uart.write("A")
      
              if C==Z :
                  uart.write("C")
              if D==Z :
                  uart.write("D")
              if E==Z :
                  uart.write("E")
              if H==Z :
                  uart.write("H")
              if I==Z :
                  uart.write("I")
              if J==Z :
                  uart.write("J")
              if K==Z :
                  uart.write("K")
              if L==Z :
                  uart.write("L")
              if M==Z :
                  uart.write("M")
              if N==Z :
                  uart.write("N")
              if O==Z :
                  uart.write("O")
              A=C=D=E=H=I=J=K=L=M=N=O=0


    • 1,数据量不够的,一般每个物品1000张图片。
      2,神经网络是一个黑盒,代码改不了什么。
      3,推荐使用我们的新产品,可以跑yolo,效果好很多。https://singtown.com/product/50933/singtown-ai-vision-module-sc1/



    • @kidswong999 好的好的谢谢啦