我们需要比9600更慢的传输速率
-
回复: 如何加延时函数
当openmv识别到色块时,需要让它一秒钟之内不发送数据,请问怎么解决,好像加上延迟函数它就跟睡死了,请问怎么解决呢?谢谢
import sensor, image, pyb import time, os, tf, math, uos, gc from pyb import UART,LED LED(3).on() sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(30) # Let the camera adjust. uart = UART(3, 115200) uart.init(115200, bits=8, parity=None, stop=1) def send_data(data1): global uart data = bytearray([0xb3,0xb3,data1,0x5b]) uart.write(data) net = None labels = None min_confidence = 0.5 try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') colors = [ # Add more colors if you are detecting more than 7 types of classes at once. (255, 0, 0), ( 0, 255, 0), (255, 255, 0), ( 0, 0, 255), (255, 0, 255), ( 0, 255, 255), (255, 255, 255), ] clock = time.clock() while(True): clock.tick() row_data=0 # 0 正常行走,1 停止,2 等待 img = sensor.snapshot() # detect() returns all objects found in the image (splitted out per class already) # we skip class index 0, as that is the background, and then draw circles of the center # of our objects for i, detection_list in enumerate(net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])): if (i == 0): continue # background class if (len(detection_list) == 0): continue # no detections for this class?]) if labels[i] == 's': row_data = 1 print('s') pyb.delay(1000) send_data(row_data) if labels[i] == 'w': row_data = 2 print('w') pyb.delay(1000) send_data(row_data) else: print(0) send_data(row_data) #print(row_data)
-
你这个逻辑是有问题。每次识别可能会识别到多个目标点的。
我改了一下,大概是这样的:
img = sensor.snapshot() row_data = [] for i, detection_list in enumerate(net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])): if (i == 0): continue # background class if (len(detection_list) == 0): continue # no detections for this class?]) if labels[i] == 's': row_data.append(1) print('s') if labels[i] == 'w': row_data.append(2) print('w') else: print(0) for d in row_data: send_data(row_data) pyb.delay(1000)