• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 线段识别问题:在图像上画一条直线之后识别这条直线,设置阈值为什么没有作用?



    • thresholds = (35, 79)
      
      sensor.reset()
      sensor.set_pixformat(sensor.GRAYSCALE)
      sensor.set_framesize(sensor.VGA)
      sensor.skip_frames(time = 2000)
      sensor.set_auto_gain(False) # must be turned off for color tracking
      sensor.set_auto_whitebal(False) # must be turned off for color tracking
      clock = time.clock()
      
      # Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are
      # returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the
      # camera resolution. "merge=True" merges all overlapping blobs in the image.
      
      while(True):
          i=0 # 定义变量i,色块个数
          thresholds = (35, 79)#第一次查找阈值
          clock.tick()
          img = sensor.snapshot()
          for blob in img.find_blobs([thresholds],roi = [120,62,359,300], pixels_threshold=300, area_threshold=100, merge=True):#pixels像素个数阈值,area返回色块边框面积阈值(w * h),merge=True多种颜色时显示一个框框
      
              img.draw_rectangle(120,62, 359, 300, color=127)# 在图像上绘制ROI区域
              # These values depend on the blob not being circular - otherwise they will be shaky.
              if blob.elongation() > 0.5:
                  #img.draw_edges(blob.min_corners(), color=255)# 返回的角列表之间绘制线边
                  img.draw_line(blob.major_axis_line(), color=153)# 返回blob的主轴(这条线穿过最小面积矩形的最长边)的行元组(x1, y1, x2, y2),可以使用 image.draw_line() 来绘制它。
                  #img.draw_line(blob.minor_axis_line(), color=0)#返回blob的次轴(这条线穿过最小面积矩形的最短边)的行元组(x1, y1, x2, y2),可以使用 image.draw_line() 来绘制它。
                  print('I长比 %s'%blob.elongation)
      
              # These values are stable all the time.
              #img.draw_rectangle(blob.rect(), color=200)# 在图像上绘制一个矩形。 您可以单独传递x,y,w,h或作为元组(x,y,w,h)传递。
              #img.draw_cross(blob.cx(), blob.cy(), color=227)# 在图像上绘制一个十字
              # Note - the blob rotation is unique to 0-180 only.
              #img.draw_keypoints([(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=40, color=1)
              #绘制圆,size 控制特征点的大小,将 fill 设置为True以填充特征点,
              #print(blob.cx())#逐个打印色块中心坐标
              #print(blob.cy())#
              #print('框高%s'%blob.h())#打印刀头高度
      
              #在特定roi找到坡口中心位置
              shang =0 # blob.x()  blob.y() 宽blob.w() 高blob.h()
              xia = 0
              zuo = 0
              you = 0
              shang = blob.x()-5
              zuo = blob.y()-5
              xia = blob.h()+5+5
              you = blob.w()+5+5
              #print('框xia %s'%xia)
              #print('框shang %s'%shang)
              #print('框X %s'%blob.x())
              #print('框y %s'%blob.y())
              k=0 # 定义变量k
      
              thresholds = (0, 39)# 第二次筛选阈值
              i——cx = blob.cx()
              i——cy = blob.cy()
      
      
      
              for blob in img.find_blobs([thresholds],roi = [shang,zuo,you,xia], pixels_threshold=75, area_threshold=10, merge=True):#pixels像素个数阈值,area返回色块边框面积阈值(w * h),merge=True多种颜色时显示一个框框
                  #img.draw_rectangle(shang,zuo,you,xia, color=15) # 在图像上绘制第二次ROI区域
                  #if blob.elongation() > 0.5:#越像圆,这个值越小,越不像圆,这个值越大。
                  #img.draw_edges(blob.min_corners(), color=255)# 返回的角列表之间绘制线边
                      #img.draw_line(blob.major_axis_line(), color=233)# 返回blob的主轴(这条线穿过最小面积矩形的最长边)的行元组(x1, y1, x2, y2),可以使用 image.draw_line() 来绘制它。
      
                  #img.draw_rectangle(blob.rect(), color=227)# 在图像上绘制一个矩形。 您可以单独传递x,y,w,h或作为元组(x,y,w,h)传递。
                  #img.draw_cross(blob.cx(), blob.cy(), color=227)# 在图像上绘制一个十字
                  k=k+1
                  k——cx = blob.cx()
                  k——cy = blob.cy()
              i=i+1 # 每个色块加1
              #print('k数量 %s'%k) # k色块个数
      
              #过滤掉距离近的
      
              #在坡口中心至刀头中心画一条直线
              img.draw_line((k——cx, k——cy, i——cx, i——cy))# 画白线
              #img.draw_line((80, 50, 100, 100), color=(255,0,0))# 画红线
      
      #确定线的朝向/角度
          thresholds = (200, 255) # 第三次筛选阈值
          #img = sensor.snapshot()
          j = 0 # 定义线段数量
          #if enable_lens_corr: img.lens_corr(1.8) # 镜头畸变矫正
          for l in img.find_line_segments( roi = [120,62,359,300], merge_distance=-5, max_theta_difference=-5):#`threshold`控制从霍夫变换中监测到的直线。只返回大于或等于阈值的直线
      
              img.draw_line(l.line(), color=200)
              #img.draw_line(x0, y0, x1, y1[, color[, thickness=1]])
              j += 1
              #print('打印l %s'%l)
          print('线段数量 %s'%j)![0_1671399275661_snipaste_20221219_053423.jpg](https://fcdn.singtown.com/0dca2393-0287-4561-9bce-7a226f7f1c5a.jpg) 
      ```![0_1671399329158_snipaste_20221219_053423.jpg](https://fcdn.singtown.com/d9adb9b6-db41-4730-9c86-f6d6166b0eff.jpg)


    • 0_1671399371237_snipaste_20221219_053423.jpg



    • 请大神指教,怎样识别物体上画出的白色线段



    • 可以识别:

      enable_lens_corr = False # turn on for straighter lines...
      
      import sensor, image, time
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      # All lines also have `x1()`, `y1()`, `x2()`, and `y2()` methods to get their end-points
      # and a `line()` method to get all the above as one 4 value tuple for `draw_line()`.
      
      while(True):
          clock.tick()
          img = sensor.snapshot()
          if enable_lens_corr: img.lens_corr(1.8) # for 2.8mm lens...
      
          # `merge_distance` controls the merging of nearby lines. At 0 (the default), no
          # merging is done. At 1, any line 1 pixel away from another is merged... and so
          # on as you increase this value. You may wish to merge lines as line segment
          # detection produces a lot of line segment results.
      
          # `max_theta_diff` controls the maximum amount of rotation difference between
          # any two lines about to be merged. The default setting allows for 15 degrees.
          
          img.draw_line(10,10,100,100,(0,0,0))
          
      
          for l in img.find_line_segments(merge_distance = 0, max_theta_diff = 5):
              img.draw_line(l.line(), color = (255, 0, 0))
              # print(l)
      
          print("FPS %f" % clock.fps())
      

      另外你识别你画的直线做什么?这是已知的啊。