• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],



    • 是这样的,但我在uart.write(c[0].x,c[1].x等等点)时会报错,让我不要加[],这怎样解决



    • 0_1654235313611_-6e5778aa2fdc1949.png
      像这样



    • import sensor, image, time, pyb
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.8)
      
          # Circle objects have four values: x, y, r (radius), and magnitude. The
          # magnitude is the strength of the detection of the circle. Higher is
          # better...
      
          # `threshold` controls how many circles are found. Increase its value
          # to decrease the number of circles detected...
      
          # `x_margin`, `y_margin`, and `r_margin` control the merging of similar
          # circles in the x, y, and r (radius) directions.
      
          # r_min, r_max, and r_step control what radiuses of circles are tested.
          # Shrinking the number of tested circle radiuses yields a big performance boost.
      
          for circles in img.find_circles(threshold = 2000, x_margin = 10, y_margin = 10, r_margin = 10,
                  r_min = 2, r_max = 100, r_step = 2):
              img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))
              c0=circles[0].x()
              print(c0)
      
      最后就会显示AttributeError: 'int' object has no attribute 'x'


    • 正确的代码:

      import sensor, image, time, pyb
      
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565) # grayscale is faster
      sensor.set_framesize(sensor.QQVGA)
      sensor.skip_frames(time = 2000)
      clock = time.clock()
      
      while(True):
          clock.tick()
          img = sensor.snapshot().lens_corr(1.8)
      
          circles = img.find_circles(threshold = 2000, x_margin = 10, y_margin = 10, r_margin = 10,
                  r_min = 2, r_max = 100, r_step = 2)
            
          for c in circles:
              img.draw_circle(c.x(), c.y(), c.r(), color = (255, 0, 0))
            
          if len(circles) > 0:
              c0=circles[0].x()
              print(c0)