在TF2上训练神经网络生成的tflite模型在pc端测试时分类结果正确,部署到openmv无法正确分类?
-
为什么在tensorflow上训练的mobilenetv2网络生成的tflite模型在片pc端测试时能够正确实现图像分类,但部署到openmv之后无法正确分类?
import sensor, image, time, os, tf sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((64, 64)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = "model1_e.tflite" labels = [line.rstrip('\n') for line in open("labels_all.txt")] clock = time.clock() #while(True): #clock.tick() img = sensor.snapshot() #img = ((img / 255) - 0.5) * 2.0 # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps")