• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 在TF2上训练神经网络生成的tflite模型在pc端测试时分类结果正确,部署到openmv无法正确分类?



    • 为什么在tensorflow上训练的mobilenetv2网络生成的tflite模型在片pc端测试时能够正确实现图像分类,但部署到openmv之后无法正确分类?

      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((64, 64))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = "model1_e.tflite"
      labels = [line.rstrip('\n') for line in open("labels_all.txt")]
      
      clock = time.clock()
      #while(True):
          #clock.tick()
      
      img = sensor.snapshot()
          #img = ((img / 255) - 0.5) * 2.0
          # default settings just do one detection... change them to search the image...
      for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
          print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
          img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
          predictions_list = list(zip(labels, obj.output()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      print(clock.fps(), "fps")