如何让这个程序能:有垃圾放入才开始识别,而不是插电之后就开始识别摄像头照到的一切东西?
-
# main.py -- put your code here! import pyb, time from pyb import Servo import sensor, image, time, os, tf led = pyb.LED(3) usb = pyb.USB_VCP() # while (usb.isconnected()==False): led.on() # time.sleep(150) # led.off() # time.sleep(100) # led.on() # time.sleep(150) # led.off() # time.sleep(600) # Edge Impulse - OpenMV Image Classification Example sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = "trained.tflite" labels = [line.rstrip('\n') for line in open("labels.txt")] clock = time.clock() while(True): clock.tick() img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f"% (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps") a = obj.output() maxx = max(a) print(maxx) maxxx = a.index(max(a)) print(maxxx) s1 = Servo(1) s2 = Servo(2) if maxxx == 3: s1.angle(90) time.sleep_ms(1000) s1.angle(0) time.sleep_ms(1000) s2.angle(90) time.sleep_ms(1000) s2.angle(0) time.sleep_ms(3000) s1.angle(180) time.sleep_ms(1000) s1.angle(0)
-
你怎么判断是否有垃圾?是添加开关?