关于巡线中回归算法识别出来结果一直不对
-
THRESHOLD = (100, 0, 37, -128, -121, 127) # Grayscale threshold for dark things... import sensor, image, time from pyb import LED import car from pid import PID rho_pid = PID(p=0.4, i=0) theta_pid = PID(p=0.001, i=0) LED(1).on() LED(2).on() LED(3).on() sensor.reset() sensor.set_vflip(True) sensor.set_hmirror(True) sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQQVGA) # 80x60 (4,800 pixels) - O(N^2) max = 2,3040,000. #sensor.set_windowing([0,20,80,40]) sensor.skip_frames(time = 2000) # WARNING: If you use QQVGA it may take seconds clock = time.clock() # to process a frame sometimes. while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) line = img.get_regression([(100,100,0,0,0,0)], robust = True) if (line): rho_err = abs(line.rho())-img.width()/2 if line.theta()>90: theta_err = line.theta()-180 else: theta_err = line.theta() img.draw_line(line.line(), color = 127) print(rho_err,line.magnitude(),rho_err) if line.magnitude()>8: #if -40<b_err<40 and -30<t_err<30: rho_output = rho_pid.get_pid(rho_err,1) theta_output = theta_pid.get_pid(theta_err,1) output = rho_output+theta_output car.run(50+output, 50-output) else: car.run(0,0) else: car.run(50,-50) pass #print(clock.fps
用的是例程,car和pid都已经好了,但是运行的时候拟合出来的线和二值化出来的曲线结果不符
是否是因为线较细?
然后又应该如何修改?
-
应该是白色是线。所以结果是错的。
解决办法,更改阈值,让白色是线。