星瞳实验室APP,快速收到回复
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 请问为什么我的openmv在运行这个程序的时候总会自动断开连接,尤其是在识别到人脸时



    • import sensor, time, image
      
      # 初始化设置
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.reset()
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.QQVGA)
      sensor.set_pixformat(sensor.GRAYSCALE)
      
      # 跳过两秒使摄像头初始化完成
      sensor.skip_frames(time = 2000)
      
      # 加入Haar Cascade 参数用于后面的识别人脸函数
      # By default this will use all stages, lower satges is faster but less accurate.
      face_cascade = image.HaarCascade("frontalface", stages=30)
      print(face_cascade)
      
      # 设置一个特征点变量
      kpts1 = None
      
      
      
      
      
      #############       把人脸的特征点录入     ##############
      
      
      while (kpts1 == None):
          img = sensor.snapshot()
          img.draw_string(0, 0, "Looking for a face...")
          # Find faces
          objects1 = img.find_features(face_cascade, threshold=0.5, scale=1.3)
          if objects1:
              # 在每个方向上将fecd的ROI扩大31个像素
              face1 = (objects1[0][0]-31, objects1[0][1]-31,objects1[0][2]+31*2, objects1[0][3]+31*2)
              # 在face的roi范围内寻找关键点
              kpts1 = img.find_lbp(face1)
              # 画出人脸的框框
              # image.save_descriptor(keypoint,"/%s.orb"%(kpts))  #keypoint为保存特征点的文件名
              img.draw_rectangle(objects1[0])
              print(kpts1)
      
      # 标记出关键点
      print(kpts1)
      #img.draw_keypoints(kpts1, size=24)
      
      
      
      
      
      
      
      img = sensor.snapshot()
      time.sleep(2000)
      
      # FPS clock
      clock = time.clock()
      
      
      ###########   对比关键点   ##########
      while (True):
          clock.tick()
          img = sensor.snapshot()
          objects2  = img.find_features(face_cascade, threshold = 0.5 ,scale_factor = 1.3)
          #try :
          #face2 = (objects2[0][0]-31 ,objects2[0][1]-31 ,objects2[0][2]+31*2 ,objects2[0][3]+31*2)
          #except : IndexError as e :
          #print(objects2[0])
      
          for face2 in objects2 :
              # Extract keypoints from the whole frame
              kpts2 = img.find_lbp(face2)
      
              if (kpts2):
                  # Match the first set of keypoints with the second one
                  # kpts3 = image.load_decriptor(keypoint)
                  c = image.match_descriptor(kpts1, kpts2)
                  print(c)
      
                  #match = c[6] # C[6] contains the number of matches.
      
                  if (c<15000):
                      img.draw_rectangle(face2)
      
                      x = face2[0] + face2[2]/2
                      y = face2[1] + face2[3]/2
                      print([int(x),int(y)])
      
                      img.draw_cross(int(x), int(y), size=10)
                    # print(kpts2, "matched:%d dt:%d"%(match, c[7]))
      
                  else :
                      print("NONE")
      
      
          # Draw FPS
          img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))
      
      


    • 0_1557908477280_849a5699-efa2-4e5f-8bc2-f08ac986ee4d-image.png