• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 如何修改云台來跟踪數字?



    • 謝謝,我昨天看過它,而且我使用了find_keypoint。 但反應並不好。
      我可以使用find_number嗎?



    • 並且find_point並不容易,在我開始之前,需要在相機前放一個數字。



    • find_number目前3.0.0的固件已经删除这个函数了。可以用模版匹配试试。



    • 模版匹配需要固定距離和大小...
      find_keypoint 可以接受的。 但是我可以提前保存關鍵點而不是每次設置嗎?
      下面是使用find_keypoint的代碼。 它工作正常

      import sensor, image, time

      from pid import PID
      from pyb import Servo

      pan_servo=Servo(1)
      tilt_servo=Servo(2)

      red_threshold = (13, 49, 18, 61, 6, 47)

      #pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      #tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID

      Reset sensor

      sensor.reset()
      #sensor.set_vflip(True)
      #sensor.set_hmirror(True)
      #sensor.rotation()

      Sensor settings

      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.VGA)
      sensor.set_windowing((320, 240))
      sensor.set_pixformat(sensor.GRAYSCALE)

      sensor.skip_frames(time = 2000)
      sensor.set_auto_gain(False, value=100)

      def draw_keypoints(img, kpts):
      if kpts:
      print(kpts)
      img.draw_keypoints(kpts)
      img = sensor.snapshot()
      time.sleep(1000)

      kpts1 = None

      NOTE: uncomment to load a keypoints descriptor from file

      #kpts1 = image.load_descriptor("/desc.orb")
      #img = sensor.snapshot()
      #draw_keypoints(img, kpts1)

      clock = time.clock()

      print("Test_start")
      while(True):
      clock.tick() # Track elapsed milliseconds between snapshots().
      img = sensor.snapshot() # Take a picture and return the image.

      if (kpts1 == None):
          # NOTE: By default find_keypoints returns multi-scale keypoints extracted from an image pyramid.
          kpts1 = img.find_keypoints(max_keypoints=150, threshold=10, scale_factor=1.2)
          draw_keypoints(img, kpts1)
      else:
          # NOTE: When extracting keypoints to match the first descriptor, we use normalized=True to extract
          # keypoints from the first scale only, which will match one of the scales in the first descriptor.
          kpts2 = img.find_keypoints(max_keypoints=150, threshold=10, normalized=True)
          if (kpts2):
              match = image.match_descriptor(kpts1, kpts2, threshold=85)
              if (match.count()>10):
                  # If we have at least n "good matches"
                  # Draw bounding rectangle and cross.
                  img.draw_rectangle(match.rect())
                  img.draw_cross(match.cx(), match.cy(), size=10)
                  pan_error = match.cx()-img.width()/2
                  tilt_error = match.cy()-img.height()/2
      

      print("pan_error: ", pan_error)

                  pan_output=pan_pid.get_pid(pan_error,1)/2
                  tilt_output=tilt_pid.get_pid(tilt_error,1)
      

      print("pan_output",pan_output)

                  pan_servo.angle(pan_servo.angle()+pan_output)
                  tilt_servo.angle(tilt_servo.angle()-tilt_output)
      

      print(kpts2, "matched:%d dt:%d"%(match.count(), match.theta()))

              # NOTE: uncomment if you want to draw the keypoints
              #img.draw_keypoints(kpts2, size=KEYPOINTS_SIZE, matched=True)
      
      # Draw FPS
      

      img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))



    • 但如果背景混亂,keypoint功能並不好. find_number 即將推出?



    • find_keypoint可以提前保存特征,例程里有写到。

      因为3.0.0固件支持了cnn lenet数字识别神经网络,所以删除了find_number函数。

      但是OpenMV ide内置的lenet模型对于OpenMV3 F7来说比较大,会超内存。
      以前的find_number函数效果也不是很好,容易误判。

      如果背景复杂,你可以先采用其他算法大致确定数字的区域,在区域roi内再进行特征点匹配。



    • blob and keypoint 是不同的。 如何使用最大尺寸?

      def find_max(kpts2):
      max_size=0
      for blob in kpts2:
      if blob.size() > max_size:
      max_blob=blob
      max_size = blob.size()
      return max_blob



    • 0_1539147869342_openMV.jpg



    • @yuan

      import sensor, image, time
      
      from pid import PID
      from pyb import Servo
      
      pan_servo=Servo(1)
      tilt_servo=Servo(2)
      
      red_threshold  = (13, 49, 18, 61, 6, 47)
      
      pan_pid = PID(p=0.07, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      tilt_pid = PID(p=0.05, i=0, imax=90) #脱机运行或者禁用图像传输,使用这个PID
      #pan_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      #tilt_pid = PID(p=0.1, i=0, imax=90)#在线调试使用这个PID
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      face_cascade = image.HaarCascade("frontalface", stages=25)
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_features(face_cascade, threshold=0.75, scale=1.35)
          if blobs:
              max_blob = find_max(blobs)
              pan_error = max_blob[0]+max_blob[2]/2-img.width()/2
              tilt_error = max_blob[1]+max_blob[3]/2-img.height()/2
      
              print("pan_error: ", pan_error)
      
              img.draw_rectangle(max_blob) # rect
              img.draw_cross(max_blob[0]+max_blob[2]/2, max_blob[1]+max_blob[3]/2) # cx, cy
      
              pan_output=pan_pid.get_pid(pan_error,1)/2
              tilt_output=tilt_pid.get_pid(tilt_error,1)
              print("pan_output",pan_output)
              pan_servo.angle(pan_servo.angle()+pan_output)
              tilt_servo.angle(tilt_servo.angle()-tilt_output)
      

      0_1539162335846_-1c36b08410d3fb0c.jpg



    • 想问楼主最后是用什么实现精准识别的哇