如何解决错误,用得openmv训练的数据集进行数字识别
-
import sensor, image, time, os, tf, math, uos, gc sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = None labels = None min_confidence = 0.5 try: # load the model, alloc the model file on the heap if we have at least 64K free after loading net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024))) except Exception as e: raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') try: labels = [line.rstrip('\n') for line in open("labels.txt")] except Exception as e: raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')') counter = [0,0,0,0,0,0,0,0,0,0,0] clock = time.clock() while True: clock.tick() # 记录当前时间 img = sensor.snapshot() # 获取图像帧 detections = net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)]) for obj in detections: label = labels[obj.classid()] confidence = obj.confidence() if confidence > min_confidence: counter[label] += 1 if counter[label] > 10: counter[label] = 0 print("%s" % labels[label]) [x, y, w, h] = obj.rect() center_x = math.floor(x + (w / 2)) center_y = math.floor(y + (h / 2)) print('x %d\ty %d' % (center_x, center_y)) img.draw_circle((center_x, center_y), 12, color=colors[i], thickness=2) img.draw_string(center_x + 20, center_y + 20, labels[i], color=colors[i], scale=1)
-
你的代码和配套生成的代码不一样啊。