导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. hcgm
    H
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    hcgm

    @hcgm

    0
    声望
    1
    楼层
    166
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    hcgm 关注

    hcgm 发布的帖子

    • 如何解决错误,用得openmv训练的数据集进行数字识别
      import sensor, image, time, os, tf, math, uos, gc
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = None
      labels = None
      min_confidence = 0.5
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      
      counter = [0,0,0,0,0,0,0,0,0,0,0]
      clock = time.clock()
      
      while True:
          clock.tick()  # 记录当前时间
      
          img = sensor.snapshot()  # 获取图像帧
      
          detections = net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])
          for obj in detections:
              label = labels[obj.classid()]
              confidence = obj.confidence()
              if confidence > min_confidence:
                  counter[label] += 1
              if counter[label] > 10:
                  counter[label] = 0
                  print("%s" % labels[label])
                  [x, y, w, h] = obj.rect()
                  center_x = math.floor(x + (w / 2))
                  center_y = math.floor(y + (h / 2))
                  print('x %d\ty %d' % (center_x, center_y))
                  img.draw_circle((center_x, center_y), 12, color=colors[i], thickness=2)
                  img.draw_string(center_x + 20, center_y + 20, labels[i], color=colors[i], scale=1)
      

      0_1690272948207_错误.png

      发布在 OpenMV Cam
      H
      hcgm