• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 请问神经网络检测到了目标怎么计数



    • 我正在坐一个环形小车,每跑一圈都会经过一次停止线,我想在检测到第三次停止线的时候给单片机发送信号停止,但是我不会怎么每经过一次记圈数+1,因为目标是从远到近逐渐出现,如果累加的话一秒就会记很多次,中间也存在漏检,请问怎么解决这个问题

      mport sensor, image, time, os, tf, uos, gc, lcd , cpufreq
      from pyb import UART,LED
      
      uart = UART(3, 115200, timeout_char=1000)
      u_start=bytearray([0x2C,0x12])
      u_over=bytearray([0x5B])
      LED(2).on()
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA)     # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      lcd.init()
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      
      
      
      
      while(True):
          flag=3
          clock.tick()
          cpufreq.set_frequency(480)
          img = sensor.snapshot().lens_corr(strength = 1.6, zoom = 1.0)
      
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              #print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
      
              predictions_list = list(zip(labels, obj.output()))
              #print(predictions_list[0][1])
              if(predictions_list[0][1]>=0.7):
                  flag=2
              elif(predictions_list[3][1]>=0.95):
                  flag=4
      
              else:
                  flag=3
              #for i in range(len(predictions_list)):
                  #print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      
          uart_buf = bytearray([flag])
          img.draw_string(10,10,str(flag),color=(0,0,255))
          uart.write(u_start)
          uart.write(uart_buf)
          uart.write(u_over)
          print(clock.fps(), "fps")
          lcd.display(img)
      
      


    • 连续20次没有识别到,就算增加一圈。



    • 那请问这个的判断应该怎么写,能稍微给一下思路嘛



    • 连续次数 = 0
      圈数 = 0
      
      while True:
          if 识别到了:
              连续次数 = 0
          else:
              连续次数 += 1
          if 连续次数 == 20:
              圈数 += 1
          print(圈数)