导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. 6pcn
    6
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    6pcn

    @6pcn

    0
    声望
    6
    楼层
    402
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    6pcn 关注

    6pcn 发布的帖子

    • 请问这个问题怎么解决

      0_1690723402260_微信图片_20230730212109.png

      发布在 OpenMV Cam
      6
      6pcn
    • 请问怎么设置每隔10s清除一下全局变量的数据

      请问怎么设置每10s清除一下全局变量的数据,也就是我的List_score01,我使用定时器会报错

      import sensor, image, time, os, tf, uos, gc, lcd , cpufreq
      from pyb import UART,LED,Timer
      
      uart = UART(3, 115200, timeout_char=1000)
      u_start=bytearray([0x2C,0x12])
      u_over=bytearray([0x5B])
      LED(2).on()
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA)     # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      #sensor.skip_frames(time=2000)          # Let the camera adjust.
      lcd.init()
      net = None
      labels = None
      List_score01 = [0]*7
      flag = 0
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      flag_stop = 0
      number = 1
      
      #label = "in","line","out","stop","wandao1","wandao2","word"
      #label = "0" ,"1"   ,"2"  ,"3"   ,"4"      ,"5"      ,"6"
      
      #def test(timer):
          #global List_score01
          #List_score01 = [0]*7
          #print("11111111")
      
      #tim = Timer(2, freq=1)      # 使用定时器2创建定时器对象-以1Hz触发
      #tim.callback(test)          # 将回调设置为tick函数
      
      
      def problem_1(predictions_list):
          global flag_stop
          global List_score01
          uart.write(u_start)
          uart.write(bytearray([3]))
          uart.write(u_over)
          print("problem_1 was OK")
          if(predictions_list[3][1]>=0.4): #'stop'
              print(List_score01)
              flag_stop +=1
              LED(3).on()
              List_score01 = [0]*7
              #print(flag_stop)
              while flag_stop >=2:
                  number = 1
                  while number < 5:  #发送"5"
                      uart.write(u_start)
                      uart.write(bytearray([5]))
                      uart.write(u_over)
                      print(5)
                      number +=1
                      time.sleep_ms(100)
                  flag_stop=0
                  number = 1
                  List_score01 = [0]*7
              time.sleep_ms(1000)
              LED(3).off()
      
      
      def problem_3(predictions_list):
          number3=1
          global List_score01
          uart.write(u_start)
          uart.write(bytearray([3]))
          uart.write(u_over)
          if(predictions_list[0][1]>=0.4): #'in'
              List_score01[int(predictions_list[0][0])] += 1
              #print(List_score01)
              if List_score01[0]>1:
                  while number3 < 5:  #发送10个"2"
                      uart.write(u_start)
                      uart.write(bytearray([2]))
                      uart.write(u_over)
                      number3 +=1
                      time.sleep_ms(100)
                  number3 = 1  #number清除再发送"3"
                  while number3 < 10:  #发送"3"
                      uart.write(u_start)
                      uart.write(bytearray([3]))
                      uart.write(u_over)
                      #print(3)
                      number3 +=1
                      time.sleep_ms(100)
                  List_score01 = [0]*7    #退出初始化循环
      
      
      while(True):
          clock.tick()
          cpufreq.set_frequency(480)
          img = sensor.snapshot().lens_corr(strength = 1.6, zoom = 1.0)
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              img.draw_rectangle(obj.rect())
              predictions_list = list(zip(labels, obj.output()))
              #for i in range(len(predictions_list)):
                  #print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                  
          if uart.any():   ##收到单片机发送来的数据
              a=uart.readline().decode()
              if(a[0]=='1'):
                  flag = 1
              if(a[0]=='3'):
                  flag = 3
      
          if flag == 1:
              problem_1(predictions_list)
              
          if flag == 3:
              problem_3(predictions_list)
      
          print(clock.fps(), "fps")
          lcd.display(img)
      
      
      
      
      发布在 OpenMV Cam
      6
      6pcn
    • 全局变量报错,错误为SyntaxError: identifier redefined as global
      import sensor, image, time, os, tf, uos, gc, lcd , cpufreq
      from pyb import UART,LED,Timer
      
      uart = UART(3, 115200, timeout_char=1000)
      u_start=bytearray([0x2C,0x12])
      u_over=bytearray([0x5B])
      LED(2).on()
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA)     # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      #sensor.skip_frames(time=2000)          # Let the camera adjust.
      lcd.init()
      net = None
      labels = None
      List_score01 = [0]*7
      
      #global List_score01
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      
      #label = "in","line","out","stop","wandao1","wandao2","word"
      #label = "0" ,"1"   ,"2"  ,"3"   ,"4"      ,"5"      ,"6"
      
      
      
      while(True):
          #flag=3
          
          number = 1
          clock.tick()
          cpufreq.set_frequency(480)
          img = sensor.snapshot().lens_corr(strength = 1.6, zoom = 1.0)
          global List_score01
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              #
              img.draw_rectangle(obj.rect())
              #print(obj.output())
              predictions_list = list(zip(labels, obj.output()))
              #print(predictions_list)
              #print(predictions_list[0][1])
              print(List_score01)
      
              if(predictions_list[0][1]>=0.7): #'in'
                  List_score01[int(predictions_list[0][0])] += 1
                  print(List_score01)
                  if List_score01[0]>1:
                      while number < 5:  #发送10个"2"
                          uart.write(u_start)
                          uart.write(bytearray([2]))
                          uart.write(u_over)
                          #img.draw_string(0, 0, "flag:%s" %(flag), scale=2, color=(255, 0, 0))
                          print(2)
                          number +=1
                          time.sleep_ms(100)
      
      
                      number = 1  #number清除再发送"3"
                      while number < 10:  #发送"3"
                          uart.write(u_start)
                          uart.write(bytearray([3]))
                          uart.write(u_over)
                          #img.draw_string(0, 0, "flag:%s" %(flag), scale=2, color=(255, 0, 0))
                          print(3)
                          number +=1
                          time.sleep_ms(100)
                      List_score01 = [0]*7    #退出初始化循环
      
      
      
              if(predictions_list[3][1]>=0.9): #'stop'
                  List_score01[int(predictions_list[3][0])] += 1
                  #print(List_score01)
                  if List_score01[3]>20:
                      while number < 7:  #发送"2"
                          uart.write(u_start)
                          uart.write(bytearray([5]))
                          uart.write(u_over)
                          #img.draw_string(0, 0, "flag:%s" %(flag), scale=2, color=(255, 0, 0))
                          print(5)
                          number +=1
                          time.sleep_ms(100)
                      List_score01 = [0]*7
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      
          #img.draw_string(10,10,str(flag),color=(0,0,255))
          uart_buf = bytearray([3])   
          uart.write(u_start)
          uart.write(uart_buf)
          uart.write(u_over)
          #print(clock.fps(), "fps")
          lcd.display(img)
          
          
      def test(timer):
          global List_score01
          List_score01 = [0]*7
          print("11111111")
      
      tim = Timer(4, freq=1)      # 使用定时器2创建定时器对象-以1Hz触发
      tim.callback(test)          # 将回调设置为tick函数
      
      

      主函数中global List_score01报错

      发布在 OpenMV Cam
      6
      6pcn
    • RE: 请问神经网络检测到了目标怎么计数

      那请问这个的判断应该怎么写,能稍微给一下思路嘛

      发布在 OpenMV Cam
      6
      6pcn
    • 请问神经网络检测到了目标怎么计数

      我正在坐一个环形小车,每跑一圈都会经过一次停止线,我想在检测到第三次停止线的时候给单片机发送信号停止,但是我不会怎么每经过一次记圈数+1,因为目标是从远到近逐渐出现,如果累加的话一秒就会记很多次,中间也存在漏检,请问怎么解决这个问题

      mport sensor, image, time, os, tf, uos, gc, lcd , cpufreq
      from pyb import UART,LED
      
      uart = UART(3, 115200, timeout_char=1000)
      u_start=bytearray([0x2C,0x12])
      u_over=bytearray([0x5B])
      LED(2).on()
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA)     # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      lcd.init()
      net = None
      labels = None
      
      try:
          # load the model, alloc the model file on the heap if we have at least 64K free after loading
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          print(e)
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      
      clock = time.clock()
      
      
      
      
      while(True):
          flag=3
          clock.tick()
          cpufreq.set_frequency(480)
          img = sensor.snapshot().lens_corr(strength = 1.6, zoom = 1.0)
      
          for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              #print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
      
              predictions_list = list(zip(labels, obj.output()))
              #print(predictions_list[0][1])
              if(predictions_list[0][1]>=0.7):
                  flag=2
              elif(predictions_list[3][1]>=0.95):
                  flag=4
      
              else:
                  flag=3
              #for i in range(len(predictions_list)):
                  #print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      
          uart_buf = bytearray([flag])
          img.draw_string(10,10,str(flag),color=(0,0,255))
          uart.write(u_start)
          uart.write(uart_buf)
          uart.write(u_over)
          print(clock.fps(), "fps")
          lcd.display(img)
      
      
      发布在 OpenMV Cam
      6
      6pcn
    • 如何在检测到某一物体后在接下来的2s内一直向单片机传输同一个信息,不会不同的信息被打断

      我通过神经网络进行目标分类,由于是高速移动状态,故误检率较高。且与单片机通信需要时间,我想在第一次检测到特征物体后,一直向单片机传输我需要给它的信息,例如0和1,因为存在误检。故传输信息可能像...0011101110100000...这样子,而我想要...0011111111111111100000....这样子

      发布在 OpenMV Cam
      6
      6pcn