红线左边识别到数字发送L,右边识别到数字发送R
-
-
或者说识别到多数字时怎么判断想要的数字是在左边还是右边
-
-
@kidswong999 哦哦已经想到了用坐标,但是不知道用什么语句
-
@dymb 你先发一下你的代码。我看看你用的什么算法。
-
@kidswong999 # Template Matching Example - Normalized Cross Correlation (NCC)
# # This example shows off how to use the NCC feature of your OpenMV Cam to match # image patches to parts of an image... expect for extremely controlled enviorments # NCC is not all to useful. # # WARNING: NCC supports needs to be reworked! As of right now this feature needs # a lot of work to be made into somethin useful. This script will reamin to show # that the functionality exists, but, in its current state is inadequate. import time, sensor, image from image import SEARCH_EX, SEARCH_DS # Reset sensor sensor.reset() # Set sensor settings sensor.set_contrast(1) sensor.set_gainceiling(16) # Max resolution for template matching with SEARCH_EX is QQVGA sensor.set_framesize(sensor.QQVGA) # You can set windowing to reduce the search image. #sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60)) sensor.set_pixformat(sensor.GRAYSCALE) from pyb import UART uart = UART(3, 115200) # Load template. # Template should be a small (eg. 32x32 pixels) grayscale image. template1 = image.Image("/1.pgm") template2 = image.Image("/2.pgm") clock = time.clock() flag=0 # Run template matching while (True): clock.tick() img = sensor.snapshot() # find_template(template, threshold, [roi, step, search]) # ROI: The region of interest tuple (x, y, w, h). # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster. # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search # # Note1: ROI has to be smaller than the image and bigger than the template. # Note2: In diamond search, step and ROI are both ignored. if flag==0: r1 = img.find_template(template1, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60)) r2 = img.find_template(template2, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60)) if r1: img.draw_rectangle(r1) flag=1 if r2: img.draw_rectangle(r2) flag=2 print(clock.fps()) if flag==1: uart.write("1") flag=999 if flag==2: uart.write("2") flag=998 r1 = img.find_template(template1, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60)) r2 = img.find_template(template2, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60)) if flag==999 if r1: img.draw_rectangle(r1) if
-
@dymb 最下面是要开始判断左右了,但是不会,请求大佬帮助一下
-
r1 = img.find_template(template1, 0.70, step=4, search=SEARCH_EX) cx = r1[0] + r1[2]/2 if cx < img.width()/2: print(左边) else: print(右边)
-
@kidswong999 大佬,cx=r1【0】+r1【2】/2出问题了
新发一个帖子,附上全部的代码。