问一下 openmv怎样才能识别出这个箭头并判断它的方向是向左或者向右
S
s5dm
@s5dm
0
声望
3
楼层
706
资料浏览
0
粉丝
1
关注
s5dm 发布的帖子
-
Ncc模板匹配按照视频教程 识别不出来箭头 阈值调高过也不行 pmg照片传不上去就不传了
# Template Matching Example - Normalized Cross Correlation (NCC) # # This example shows off how to use the NCC feature of your OpenMV Cam to match # image patches to parts of an image... expect for extremely controlled enviorments # NCC is not all to useful. # # WARNING: NCC supports needs to be reworked! As of right now this feature needs # a lot of work to be made into somethin useful. This script will reamin to show # that the functionality exists, but, in its current state is inadequate. import time, sensor, image from image import SEARCH_EX, SEARCH_DS # Reset sensor sensor.reset() ## Set sensor settings #sensor.set_contrast(1) #sensor.set_gainceiling(16) ## Max resolution for template matching with SEARCH_EX is QQVGA #sensor.set_framesize(sensor.QQVGA) ## You can set windowing to reduce the search image. ##sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60)) #sensor.set_pixformat(sensor.GRAYSCALE) sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QQVGA) # Set frame size to QVGA (320x240) sensor.skip_frames(time = 2000) # Wait for settings take effect. # Load template. # Template should be a small (eg. 32x32 pixels) grayscale image. template = image.Image("/666.pgm") clock = time.clock() # Run template matching while (True): clock.tick() img = sensor.snapshot() # find_template(template, threshold, [roi, step, search]) # ROI: The region of interest tuple (x, y, w, h). # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster. # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search # # Note1: ROI has to be smaller than the image and bigger than the template. # Note2: In diamond search, step and ROI are both ignored. r = img.find_template(template, 10, step=4, search=SEARCH_EX) if r: img.draw_rectangle(r) print(clock.fps())