• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • Ncc模板匹配按照视频教程 识别不出来箭头 阈值调高过也不行 pmg照片传不上去就不传了



    • # Template Matching Example - Normalized Cross Correlation (NCC)
      #
      # This example shows off how to use the NCC feature of your OpenMV Cam to match
      # image patches to parts of an image... expect for extremely controlled enviorments
      # NCC is not all to useful.
      #
      # WARNING: NCC supports needs to be reworked! As of right now this feature needs
      # a lot of work to be made into somethin useful. This script will reamin to show
      # that the functionality exists, but, in its current state is inadequate.
      
      import time, sensor, image
      from image import SEARCH_EX, SEARCH_DS
      
      # Reset sensor
      sensor.reset()
      
      ## Set sensor settings
      #sensor.set_contrast(1)
      #sensor.set_gainceiling(16)
      ## Max resolution for template matching with SEARCH_EX is QQVGA
      #sensor.set_framesize(sensor.QQVGA)
      ## You can set windowing to reduce the search image.
      ##sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))
      #sensor.set_pixformat(sensor.GRAYSCALE)
      sensor.reset()                      # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QQVGA)   # Set frame size to QVGA (320x240)
      sensor.skip_frames(time = 2000)     # Wait for settings take effect.
      
      # Load template.
      # Template should be a small (eg. 32x32 pixels) grayscale image.
      template = image.Image("/666.pgm")
      
      clock = time.clock()
      
      # Run template matching
      while (True):
          clock.tick()
          img = sensor.snapshot()
      
          # find_template(template, threshold, [roi, step, search])
          # ROI: The region of interest tuple (x, y, w, h).
          # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
          # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
          #
          # Note1: ROI has to be smaller than the image and bigger than the template.
          # Note2: In diamond search, step and ROI are both ignored.
          r = img.find_template(template, 10, step=4, search=SEARCH_EX)
          if r:
             img.draw_rectangle(r)
          print(clock.fps())
      
      

      0_1684481366487_f6f9a66361cc33235ab9f8421cedb42.jpg

      0_1684481374001_456198be55563218cd6213b2e7e7d6d.jpg