Navigation

    • Login
    • Search
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. Home
    2. pt6u
    P
    • Flag Profile
    • Profile
    • Following
    • Followers
    • Blocks
    • Topics
    • Posts
    • Best
    • Groups
    • mipush

    pt6u

    @pt6u

    0
    Reputation
    7
    Posts
    52
    Profile views
    0
    Followers
    0
    Following
    Joined Last Online

    pt6u Follow

    Posts made by pt6u

    • RE: 求助关于人脸分辨的相关问题

      @kidswong999 是按照视频的步骤进行的

      posted in OpenMV Cam
      P
      pt6u
    • face tracking: OSError: Could not find the file

      用给定的人脸分辨的例子,显示说断言失败 0_1609898160057_屏幕截图(205).png

      posted in OpenMV Cam
      P
      pt6u
    • 求助关于人脸分辨的相关问题

      你好请问这个人脸识别代码为什么不能输出num的值,串行口显示没有输出值,万分感谢
      0_1609842711289_屏幕截图(206).png

      import sensor, time, image, pyb
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
      sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
      sensor.set_windowing((92,112))
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.skip_frames(time = 5000) #等待5s
      num = 0
      def min(pmin, a, s):
          global num
          print(00000000)
          if a < pmin:
              pmin = a
              num = s
              
          return pmin
          sensor.reset() # Initialize the camera sensor.
          sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
          sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
          sensor.set_windowing((92,112))
          sensor.skip_frames(10) # Let new settings take affect.
          sensor.skip_frames(time = 5000) #等待5s
          
          NUM_SUBJECTS = 2
          NUM_SUBJECTS_IMGS = 20
          img = sensor.snapshot()
          d0 = img.find_lbp((0, 0, img.width(), img.height()))
          img = None
          pmin = 999999
          num = 0
          for s in range(1, NUM_SUBJECTS + 1):
              dist = 0
              for i in range(2, NUM_SUBJECTS_IMGS + 1):
                  img = image.Image("singtown/s%d/%d.pgm" % (s, i))
                  d1 = img.find_lbp((0, 0, img.width(), img.height()))
                  dist += image.match_descriptor(d0, d1)
              print("Average dist for subject %d: %d" % (s, dist / NUM_SUBJECTS_IMGS))
              pmin = min(pmin, dist / NUM_SUBJECTS_IMGS, s)
              print(pmin)
              if dist / NUM_SUBJECTS_IMGS == pmin:
                  num = s
          print(num)
      
      
      posted in OpenMV Cam
      P
      pt6u
    • 关于onenet和openmv之间的相关问题?

      请问我现在想将openmv的图片截取一张传给onenet平台,openmv这边可以实现吗?如果可以的话,能否通过stm32来发送这个截取图片的命令

      posted in OpenMV Cam
      P
      pt6u
    • 关于openmv串口发送问题

      想通过串口给32发送mv识别二维码

      0_1608688097jpg 的信息,但只想发送四个xywh坐标,不想发送其他的信息,但是改的代码却把qrcode函数下的九类信息全发到调试助手上了,请问怎样修改才能让只发送qrcodes函数下的一部分信息给别的单片机?拜托了!

      import sensor, image, time
      from pyb import UART
      import json
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)
      sensor.set_framesize(sensor.QVGA)
      sensor.skip_frames(time = 2000)
      sensor.set_auto_gain(False) # must turn this off to prevent image washout...
      clock = time.clock()
      uart = UART(3, 115200)
      
      while(True):
          clock.tick()
          img = sensor.snapshot()
          img.lens_corr(1.8) # strength of 1.8 is good for the 2.8mm lens.
          for code in img.find_qrcodes():
              img.draw_rectangle(code.rect(), color = (255, 0, 0))
              output_str = json.dumps(code)
              print('you send:',output_str)
              uart.write(output_str+'\n')
          else:
              print('not found!')
      
      

      0_1608687756488_pg

      0_1608687760pg

      0_160868776562pg

      posted in OpenMV Cam
      P
      pt6u
    • 人体型识别问题,有哪位大佬知道咋样解决?

      0_1608108985527_CE(`P8Y{BA4%ANS)PK(~XXY.png
      这是根据例程人脸追踪改过来的,之前还可以用,但不知道为什么现在只能识别人体,然后就卡在识别那里,下方也不能输出数据,不能追踪了,

      import sensor, time, image
      sensor.reset()
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.set_framesize(sensor.VGA)
      sensor.set_windowing((320, 240))
      sensor.set_pixformat(sensor.RGB565)
      # Skip a few frames to allow the sensor settle down
      sensor.skip_frames(time = 2000)
      
      # Load Haar Cascade
      # By default this will use all stages, lower satges is faster but less accurate.
      body_cascade = image.HaarCascade("haarcascade_fullbody.cascade", stages=25)
      print(body_cascade)
      
      # First set of keypoints
      kpts1 = None
      
      # Find a body!
      while (kpts1 == None):
          img = sensor.snapshot()
          img.draw_string(0, 0, "Looking for a body...")
          # Find bodies
          objects = img.find_features(body_cascade, threshold=0.5, scale=1.25)
          if objects:
              # Expand the ROI by 31 pixels in every direction
              body = (objects[0][0]-31, objects[0][1]-31,objects[0][2]+31*2, objects[0][3]+31*2)
              # Extract keypoints using the detect face size as the ROI
              kpts1 = img.find_keypoints(threshold=10, scale_factor=1.1, max_keypoints=100, roi=body)
              # Draw a rectangle around the first face
              img.draw_rectangle(objects[0])
      
      # Draw keypoints
      print(kpts1)
      img.draw_keypoints(kpts1, size=24)
      img = sensor.snapshot()
      time.sleep(2000)
      
      # FPS clock
      clock = time.clock()
      
      while (True):
          clock.tick()
          img = sensor.snapshot()
          # Extract keypoints from the whole frame
          kpts2 = img.find_keypoints(threshold=10, scale_factor=1.1, max_keypoints=100, normalized=True)
      
          if (kpts2):
              # Match the first set of keypoints with the second one
              c=image.match_descriptor(kpts1, kpts2, threshold=85)
              match = c[6] # C[6] contains the number of matches.
              if (match>5):
                  img.draw_rectangle(c[2:6])
                  img.draw_cross(c[0], c[1], size=10)
                  print(kpts2, "matched:%d dt:%d"%(match, c[7]))
      
          # Draw FPS
          img.draw_string(0, 0, "FPS:%.2f"%(clock.fps()))
      
      
      posted in OpenMV Cam
      P
      pt6u
    • 利用openmv进行身形识别跟踪的相关问题?

      请问我如果要用opencv里的训练好的识别算法,我也已经将.xml文件用Python脚本转换成.cascade文件,在主代码中也改了,然后接下来应该怎样操作才能在摄像头上成功运行这个主函数,那个转化过来的.cascade识别算法文件应该放在哪里?

      posted in OpenMV Cam
      P
      pt6u