导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. ggis
    G
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    ggis

    @ggis

    0
    声望
    7
    楼层
    459
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    ggis 关注

    ggis 发布的帖子

    • RE: 为什么我用串口传输时,图像会变得像马赛克一样?

      用的是openmv3CamM7,最新版的固体版本

      发布在 OpenMV Cam
      G
      ggis
    • 为什么我用串口传输时,图像会变得像马赛克一样?
      import sensor, image, time
      from pyb import UART
      import json
      # For color tracking to work really well you should ideally be in a very, very,
      # very, controlled enviroment where the lighting is constant...
      yellow_threshold   = (65, 100, -10, 6, 24, 51)
      # You may need to tweak the above settings for tracking green things...
      # Select an area in the Framebuffer to copy the color settings.
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      uart = UART(3, 115200)
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob.pixels() > max_size:
                  max_blob=blob
                  max_size = blob.pixels()
          return max_blob
      
      while(True):
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_blobs([yellow_threshold])
          if blobs:
              max_blob=find_max(blobs)
              print('sum :', len(blobs))
              img.draw_rectangle(max_blob.rect())
              img.draw_cross(max_blob.cx(), max_blob.cy())
      
              output_str="[%d,%d]" % (max_blob.cx(),max_blob.cy()) #方式1
              #output_str=json.dumps([max_blob.cx(),max_blob.cy()]) #方式2
              print('you send:',output_str)
              uart.write(output_str+'\r\n')
          else:
              print('not found!')
      

      0_1639317913202_QQ图片20211212220455.png

      发布在 OpenMV Cam
      G
      ggis
    • RE: I2C(-1, ...) is deprecated, use SoftI2C(...) instead ?

      现在没有影响了,但是感觉运行速度好慢,三十几秒才一个循环

      发布在 OpenMV Cam
      G
      ggis
    • I2C(-1, ...) is deprecated, use SoftI2C(...) instead ?
      import sensor, image, time, math
      import pyb
      from servo import Servos
      from machine import I2C, Pin
      
      
      
      sensor.reset() # 初始化摄像头
      sensor.set_pixformat(sensor.RGB565) # 格式为 RGB565.
      sensor.set_framesize(sensor.QQVGA) # 使用 QQVGA 速度快一些
      sensor.skip_frames(time = 2000) # 跳过2000s,使新设置生效,并自动调节白平衡
      sensor.skip_frames(10) # Let new settings take affect.
      
      sensor.set_auto_gain(False) # 关闭自动自动增益。默认开启的,在颜色识别中,一定要关闭白平衡。
      sensor.set_auto_whitebal(False)
      #关闭白平衡。白平衡是默认开启的,在颜色识别中,一定要关闭白平衡。
      clock = time.clock() # 追踪帧率
      
      i2c = I2C(sda=Pin('P5'), scl=Pin('P4'))
      servo = Servos(i2c, address=0x40, freq=50, min_us=650, max_us=2800, degrees=180)
      
      red_threshold   = (87, 11, 127, 6, 2, 93)
      K=1400#the value should be measured得到mm
      x_chassis=0
      y_chassis=0
      x_camera=0
      l_camera=0
      i=0
      arm_angle_goal=0
      elbow_angle_goal=0
      chassised_angle=0
      chassised_angle_goal=0
      chassis_angle_goal=0
      arm_ball=0
      chassis_ball=0
      chassis_high=0
      chassis_angle=0      #底盘舵机角度
      arm_angle=0          #臂舵机角度
      elbow_angle=0        #肘舵机角度
      hand_angle=0         #手爪舵机角度
      
      
      max_chassis_angle=180     #底盘舵机复位角度
      min_chassis_angle=0       #底盘舵机有效角度
      max_arm_angle=93        #臂舵机复位角度
      min_arm_angle=0          #臂舵机有效角度
      max_elbow_angle=180       #肘舵机复位角度
      min_elbow_angle=0        #肘舵机有效角度
      max_hand_angle=120        #手爪舵复位机角度
      min_hand_angle=60         #手爪舵机有效角度
      
      x_camera=0           #小球对于摄像头x坐标
      y_camera=0           #小球对于摄像头y坐标
      x_chassis=0          #小球对于底盘x坐标
      y_chassis=0          #小球对于底盘y坐标
      i=0
      
      
      arm_angle_camera=0     #手臂和水平线角度
      arm_ball=0             #臂舵机到球距离
      elbow_angle_camera=0   #肘舵机于竖线的角度
      
      chassis_high=50     #底座高度mm 90-20=70
      arm_long=70        #手臂长度
      elbow_hand_long=100 #手爪到肘长
      chassis_ball=0      #底座到球距离
      
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      
      while(True):
      
          time.sleep(3000)
          print('进入')
          while(i<11):
              i=i+1
              clock.tick() # Track elapsed milliseconds between snapshots().
              img = sensor.snapshot() # 从感光芯片获得一张图像
      
              blobs = img.find_blobs([red_threshold])
              if blobs:
              #如果找到了目标颜色
                  for b in blobs:
                  #迭代找到的目标颜色区域
                      # Draw a rect around the blob.
                      img.draw_rectangle(b[0:4]) # rect
                      #用矩形标记出目标颜色区域
                      img.draw_cross(b[5], b[6]) # cx, cy
                      #在目标颜色区域的中心画十字形标记
              Lm = b[2]#+b[3])/2
              length = K/Lm   #球到摄像头距离
              x_camera=x_camera+b[5]  #为了求x点在感兴趣区域的坐标x平均
              l_camera=l_camera+length #距离累加10次
              print('正在获取小球对于球的坐标,距离,x坐标:',length,int(length),b[5])
              #print(length)
              #print(b[5])
              time.sleep(30)
          x_camera=x_camera/10
          l_camera=l_camera/10
          x_chassis=math.sin((x_camera-80)*115/160)*l_camera
          x_chassis=math.fabs(x_chassis)
          y_chassis=math.cos((x_camera-80)*115/160)*l_camera+80
          #115是整个视野角度,平均到x方向每个像素就是115/160左边为负,右边为正,再乘以距离就是真实的偏移距离
      
      
          print('得到数据,距离平均值mm,x坐标平均值,x绝对坐标,y绝对坐标,角度')
          time.sleep(30)
          print(l_camera)
          print(x_camera)
          print(x_chassis)
          print(y_chassis)
          print((x_camera-80)*115/160)
          #break
      
          #进入抓球状态
          chassised_angle=math.atan(x_chassis/y_chassis) #得到相对弧度
          chassised_angle=chassised_angle*180/3.14   #转换成角度
          chassised_angle_goal=90-chassised_angle/0.34   #0.34=50/17  转换成舵机绝对角度
          print('底盘绝对角度是:')
          print( chassised_angle)
      
          #arm_angle_goal和elbow_angle_goal是目标角度
          chassis_ball=math.sqrt(x_chassis**2+y_chassis**2)
          arm_angle_goal=math.atan(chassis_high/chassis_ball)    #角度:底座——球 & ——水平线
          arm_ball=math.sqrt(chassis_ball*chassis_ball+chassis_high*chassis_high) #臂舵机到球距离
          #手臂和水平线角度余弦定理c*c = a*a + b*b - 2*a*b*cosC求反余弦减去臂舵机到球距离
          print( chassised_angle)
          arm_angle_goal=math.acos((arm_long**2 + arm_ball**2 - elbow_hand_long**2)/(2*arm_long*arm_ball))-arm_angle_goal
          arm_angle_goal= arm_angle_goal*180/math.pi #手臂和水平线角度
      
          elbow_angle_goal = math.acos((elbow_hand_long*elbow_hand_long + arm_long*arm_long - arm_ball*arm_ball )/(2 * elbow_hand_long * arm_long))*180/math.pi#臂肘之间的角度
          elbow_angle_goal = elbow_angle_goal-90+arm_angle_goal  #肘舵机于竖线的角度
          print('底座目标角度:')
          print(chassised_angle)
          print('手臂目标角度:')
          print(arm_angle_goal)
          print('肘部目标角度:')
          print(elbow_angle_goal)
          pass
          while(elbow_angle!=elbow_angle_goal or arm_angle!= arm_angle_goal or chassis_angle!= chassis_angle_goal or hand_angle!=min_hand_angle ):
              i=4
              while(i>=0):
                  i=i-1
                  if i==3 and hand_angle>min_hand_angle:
                      servo.position(i,hand_angle)
                      hand_angle-=1
                  elif i==2 and elbow_angle <= elbow_angle_goal:
                      pass
                      servo.position(i,elbow_angle)
                      elbow_angle+=1
      
                  elif i==1 and arm_angle <= arm_angle_goal:
                      pass
                      servo.position(i,arm_angle)
                      arm_angle+=1
                  elif i==0 and chassis_angle > chassis_angle_goal:
                      ervo.position(i,chassis_angle)
                      arm_angle-=1
                  elif i==0 and chassis_angle <= chassis_angle_goal:
                      servo.position(i,chassis_angle)
                      arm_angle+=1
          while(min_hand_angle<=hand_angle):
              hand_angle+=1
              servo.position(4,hand_angle)
              time.sleep(30)
      
      
      
      
      
          while(elbow_angle!=max_elbow_angle or arm_angle!=max_arm_angle or chassis_angle!=90):
              pass
              i=3
              while(i>=0):
              #底座,手臂,肘,手爪,对应0,1,2,3
                  i=i-1
                  if i==2 and elbow_angle<=max_elbow_angle:
                      servo.position(i,elbow_angle)
                      elbow_angle+=1
                  elif i==1 and arm_angle<=max_arm_angle:
                          servo.position(i,arm_angle)
                          arm_angle+=1
                  elif i==0 and chassis_angle!=90:
                      if chassis_angle<90:
                          ervo.position(i,chassis_angle)
                          arm_angle+=1
                      else:
                          ervo.position(i,chassis_angle)
                          arm_angle-=1
      
      发布在 OpenMV Cam
      G
      ggis
    • 为什么我的openmv用起来很卡顿,延迟特别高???
      # Blob Detection Example
      #
      # This example shows off how to use the find_blobs function to find color
      # blobs in the image. This example in particular looks for dark green objects.
      
      import sensor, image, time
      import car
      from pid import PID
      
      # You may need to tweak the above settings for tracking green things...
      # Select an area in the Framebuffer to copy the color settings.
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use RGB565.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.set_auto_whitebal(False) # turn this off.
      clock = time.clock() # Tracks FPS.
      
      # For color tracking to work really well you should ideally be in a very, very,
      # very, controlled enviroment where the lighting is constant...
      green_threshold   = (76, 96, -110, -30, 8, 66)
      size_threshold = 2000
      x_pid = PID(p=0.5, i=1, imax=100)
      h_pid = PID(p=0.05, i=0.1, imax=50)
      
      def find_max(blobs):
          max_size=0
          for blob in blobs:
              if blob[2]*blob[3] > max_size:
                  max_blob=blob
                  max_size = blob[2]*blob[3]
          return max_blob
      
      while(True):
          clock.tick() # Track elapsed milliseconds between snapshots().
          img = sensor.snapshot() # Take a picture and return the image.
      
          blobs = img.find_blobs([green_threshold])
          if blobs:
              max_blob = find_max(blobs)
              x_error = max_blob[5]-img.width()/2
              h_error = max_blob[2]*max_blob[3]-size_threshold
              print("x error: ", x_error)
              '''
              for b in blobs:
                  # Draw a rect around the blob.
                  img.draw_rectangle(b[0:4]) # rect
                  img.draw_cross(b[5], b[6]) # cx, cy
              '''
              img.draw_rectangle(max_blob[0:4]) # rect
              img.draw_cross(max_blob[5], max_blob[6]) # cx, cy
              x_output=x_pid.get_pid(x_error,1)
              h_output=h_pid.get_pid(h_error,1)
              print("h_output",h_output)
              car.run(-h_output-x_output,-h_output+x_output)
          else:
              car.run(18,-18)
      
      发布在 OpenMV Cam
      G
      ggis