MemoryError: Out of fast Frame Buffer Stack Memory!
-
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf import gc gc.threshold(100000) sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QQVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = "trained.tflite"#模型文件 labels = [line.rstrip('\n') for line in open("labels.txt")] #1 - clock = time.clock() while(True): clock.tick() gc.collect() img = sensor.snapshot() # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps")
-
神经网络只能在OpenMV4 Plus上运行的,
因为OpenMV4 的Ram不够,所以内存爆了。