神经网络中的文件类名怎么打印出来?判断对于识别率为90%时打印出来
-
# Edge Impulse - OpenMV Image Classification Example import sensor, image, time, os, tf, pyb sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. net = "trained.tflite" labels = [line.rstrip('\n') for line in open("labels.txt")] clock = time.clock() while(True): clock.tick() img = sensor.snapshot() for i in range(10): x = (pyb.rng() % (2*img.width())) - (img.width()//2) y = (pyb.rng() % (2*img.height())) - (img.height()//2) w = (pyb.rng() % (img.width()//2)) h = (pyb.rng() % (img.height()//2)) r = (pyb.rng() % 127) + 128 g = (pyb.rng() % 127) + 128 b = (pyb.rng() % 127) + 128 img.draw_rectangle(x, y, w, h, color = (r, g, b), thickness = 2, fill = False) # default settings just do one detection... change them to search the image... for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5): print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect()) img.draw_rectangle(obj.rect()) # This combines the labels and confidence values into a list of tuples predictions_list = list(zip(labels, obj.output())) for i in range(len(predictions_list)): print("%s = %f" % (predictions_list[i][0], predictions_list[i][1])) print(clock.fps(), "fps") #目标判断及框取 # img.draw_rectangle(blob.rect())#如果识别到颜色就框起来 #img.draw_cross(blob.cx(), blob.cy())#draw_cross:在中心画十字架;blob.cx(), blob.cy:色块中心坐标+
-
predictions_list[i][0]就是名字