• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 我该怎么在openMV上使用我自己训练过的facenet模型呢?主要是tensorflow等模块的环境问题?



    • import numpy as np
      from PIL import Image
      
      from facenet import Facenet
      
      if __name__ == "__main__":
          model = Facenet()
      
          image_001 = Image.open('img/1.jpg')
          image_002 = Image.open('img/2.jpg')
          image_003 = Image.open('img/3.jpg')
          image_004 = Image.open('img/4.jpg')
      
          while True:
              image_x = input('Input image_x filename:')
              try:
                  image_x = Image.open(image_x)
              except:
                  print('Image_1 Open Error! Try again!')
                  continue
      
              probability_001 = model.detect_image(image_001, image_x)
              probability_002 = model.detect_image(image_002, image_x)
              probability_003 = model.detect_image(image_003, image_x)
              probability_004 = model.detect_image(image_004, image_x)
      
              x = min(probability_001,probability_002,probability_003,probability_004)
      
              if(x==probability_001):
                  print(1)
                  print(x)
              elif(x==probability_002):
                  print(2)
                  print(x)
              elif(x==probability_003):
                  print(3)
                  print(x)
              elif(x==probability_004):
                  print(4)
                  print(x)
      


    • import colorsys
      import os
      
      import keras
      import matplotlib.pyplot as plt
      import numpy as np
      from keras import backend as K
      from keras.applications.imagenet_utils import preprocess_input
      from PIL import Image, ImageDraw, ImageFont
      
      from nets.facenet import facenet
      
      #--------------------------------------------#
      #   使用自己训练好的模型预测需要修改2个参数
      #   model_path和backbone需要修改!
      #--------------------------------------------#
      class Facenet(object):
          _defaults = {
              "model_path"    : "model_data/facenet_mobilenet.h5",
              "input_shape"   : [160,160,3],
              "backbone"      : "mobilenet"
          }
      
          @classmethod
          def get_defaults(cls, n):
              if n in cls._defaults:
                  return cls._defaults[n]
              else:
                  return "Unrecognized attribute name '" + n + "'"
      
          #---------------------------------------------------#
          #   初始化Facenet
          #---------------------------------------------------#
          def __init__(self, **kwargs):
              self.__dict__.update(self._defaults)
              self.sess = K.get_session()
              self.generate()
              
          def generate(self):
              model_path = os.path.expanduser(self.model_path)
              assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
              
              self.model = facenet(self.input_shape, backbone=self.backbone, mode="predict")
              self.model.load_weights(self.model_path, by_name=True)
              
              self.model.summary()
              print('{} model, anchors, and classes loaded.'.format(model_path))
          
          def letterbox_image(self, image, size):
              if self.input_shape[-1]==1:
                  image = image.convert("RGB")
              iw, ih = image.size
              w, h = size
              scale = min(w/iw, h/ih)
              nw = int(iw*scale)
              nh = int(ih*scale)
      
              image = image.resize((nw,nh), Image.BICUBIC)
              new_image = Image.new('RGB', size, (128,128,128))
              new_image.paste(image, ((w-nw)//2, (h-nh)//2))
              if self.input_shape[-1]==1:
                  new_image = new_image.convert("L")
              return new_image
      
          #---------------------------------------------------#
          #   检测图片
          #---------------------------------------------------#
          def detect_image(self, image_1, image_2):
              #---------------------------------------------------#
              #   对输入图片进行不失真的resize
              #---------------------------------------------------#
              image_1 = self.letterbox_image(image_1,[self.input_shape[1],self.input_shape[0]])
              image_2 = self.letterbox_image(image_2,[self.input_shape[1],self.input_shape[0]])
              
              #---------------------------------------------------#
              #   进行图片的归一化
              #---------------------------------------------------#
              image_1 = np.asarray(image_1).astype(np.float64)/255
              image_2 = np.asarray(image_2).astype(np.float64)/255
      
              photo1 = np.expand_dims(image_1,0)
              photo2 = np.expand_dims(image_2,0)
              #---------------------------------------------------#
              #   图片传入网络进行预测
              #---------------------------------------------------#
              output1 = self.model.predict(photo1)
              output2 = self.model.predict(photo2)
              
              #---------------------------------------------------#
              #   计算二者之间的距离
              #---------------------------------------------------#
              l1 = np.sqrt(np.sum(np.square(output1 - output2), axis=-1))
              #
              # plt.subplot(1, 2, 1)
              # plt.imshow(np.array(image_1))
              #
              # plt.subplot(1, 2, 2)
              # plt.imshow(np.array(image_2))
              # plt.text(-12, -12, 'Distance:%.3f' % l1, ha='center', va= 'bottom',fontsize=11)
              # plt.show()
              return l1
      
          def close_session(self):
              self.sess.close()
      


    • 你需要先把模型导出到tflite。