星瞳实验室APP,快速收到回复
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 怎么比较神经网络识别的正确率大小呢



    • import sensor, image, time, os, tf, time
      from pyb import Servo
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      net = "trained.tflite"
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      s1 = Servo(1) # P7连接舵机的PWM线
      s2 = Servo(2) # P8
      clock = time.clock()
      while(True):
          clock.tick()
          img = sensor.snapshot()
          # default settings just do one detection... change them to search the image...
          for obj in tf.classify(net, img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
              print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
              img.draw_rectangle(obj.rect())
              # This combines the labels and confidence values into a list of tuples
              predictions_list = list(zip(labels, obj.output()))
              for i in range(len(predictions_list)):
                  print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                  if predictions_list[i][0]=='battery' and predictions_list[i][1]>0.8:             #在什么概率下 进行不同的动作
                      print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                      for i in range(-180,-90):
                          s1.angle(0)
                          s2.angle(i)
                          time.sleep(10)
                  if predictions_list[i][0]=='bottle' and float(predictions_list[i][1])>0.8:
                      print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                      for i in range(-180,0):
                          s1.angle(90)
                          s2.angle(i)
                          time.sleep(10)
                  if predictions_list[i][0]=='can' and float(predictions_list[i][1])>0.8:
                      print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                      for i in range(-180,90):
                          s1.angle(180)
                          s2.angle(i)
                          time.sleep(10)
                  if predictions_list[i][0]=='cigarette' and float(predictions_list[i][1])>0.8:
                      print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
                      for i in range(-180,180):![0_1607955907770_f599f1802baf269f4b0010f9c928f49.jpg](https://fcdn.singtown.com/4c0a1418-650a-4853-9f62-6284660f5ecd.jpg) 
                          s1.angle(270)
                          s2.angle(i)
                          time.sleep(10)
      


    • if predictions_list[i][0]=='bottle' and float(predictions_list[i][1])>0.8:
      就我这句错了 说我越界了 要怎么写才是对的呢



    • 找到原因了 把列表里的“bottle”这种的判断删去就没事了