星瞳实验室APP,快速收到回复
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • OSError:Descriptors have different type怎么解决



    • 调试人脸识别代码时同一条语句不定时出现不同错误。还有其他奇奇怪怪的bug也都不定时出现。运气好时可以连续运行一个小时。运气不好时一打开就崩溃。而且有时不报错直接崩

      3_16023213694ng
      2_16023213694ng

      1_16023213694ng

      0_160232136ng

      # Face recognition with LBP descriptors.
      # See Timo Ahonen's "Face Recognition with Local Binary Patterns".
      #
      # Before running the example:
      # 1) Download the AT&T faces database http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.zip
      # 2) Exract and copy the orl_faces directory to the SD card root.
      
      
      import sensor, time, image, pyb
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
      sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
      sensor.set_windowing([0,0,127,127])#((92,112))
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.skip_frames(time = 5000) #等待5s
      sensor.set_contrast(1)
      sensor.set_gainceiling(16)
      
      face_cascade = image.HaarCascade("frontalface", stages=25)
      
      #SUB = "s1"
      NUM_SUBJECTS = 6 #图像库中不同人数,一共6人
      NUM_SUBJECTS_IMGS = 20 #每人有20张样本图片
      
      # 拍摄当前人脸。
      #img = sensor.snapshot()
      ##img = image.Image("singtown/%s/1.pgm"%(SUB))
      #d0 = img.find_lbp((0, 0, img.width(), img.height()))
      #d0为当前人脸的lbp特征
      img = None
      pmin = 999999
      num=0
      
      def min(pmin, a, s):
          global num
          if a<pmin:
              pmin=a
              num=s
          return pmin
      
      def max_face(objects):
      
          face2=0
          for face1 in objects:
              face2=face1;
              #if i==0:
                  #face2=objects[0]
                  #i=1;
              #elif face1.w<objects[i].w:
                  #face2=objects[i]
      
          return face2;
      
      face=[0,0,127,127]
      dist = 0
      while(True):
          img = sensor.snapshot()
          objects = img.find_features(face_cascade, threshold=1.3, scale=1.5)
          #face=max_face(objects);
          if len(objects)==1:
      
              for face in objects:
                  print(objects)
              img.draw_rectangle(face);
              if face[3]<50:
                  continue;
              elif face[2]>55:
                  continue;
              sensor.set_windowing(face)
              d0 = img.find_lbp(face) #((0, 0, img.width(), img.height()))
              pmin=9999999;
              for s in range(1, NUM_SUBJECTS+1):
                  dist = 0
                  for i in range(2, NUM_SUBJECTS_IMGS+1):
                      img = image.Image("singtown/s%d/%d.pgm"%(s, i))         #pgm
                      d1 = img.find_lbp((0, 0, img.width(), img.height()))
                      #d1为第s文件夹中的第i张图片的lbp特征
                      dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
                  print("Average dist for subject %d: %d"%(s, dist/NUM_SUBJECTS_IMGS))
                  pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。
                  print(pmin)
      
              print(num) # num为当前最匹配的人的编号。
              sensor.set_windowing([0,0,127,127])#((92,112))
          sensor.skip_frames(time = 200)
      
      


    • 你用的是什么硬件,什么版本固件?



    • H7的 固件是3.6.8



    • 刚刚又爆了个错误 但是忘截图了
      0_1602324896png



    • @kidswong999 我刚刚又换了个F7试了下 依然存在若干bug随机出现的问题 再比如还有这个:
      0_16023269.png



    • @kidswong999 实在不会了。救救孩子吧😢