OverflowError: buffer too small 遇到图片情况就会报错
-
主要是说缓冲区太小的问题,目前找不到解决办法,使用的是例程视频里面的循迹小车部分,就是主函数里面多加了一个串口发送的,发送出去输出的output的有符号的值,每当一遇到跳变很大的或者如遇到图片情况就会报错:
Traceback (most recent call last):
File "", line 39, in :第39行是sending_data(int(output))
File "", line 9, in sending_data:第9行是byte_value = data1.to_bytes(1, 'big', True)
OverflowError: buffer too small
OpenMV v4.6.20; MicroPython v1.24.62; OPENMV4P with STM32H743
Type "help()" for more information.THRESHOLD = (1, 28, -21, 5, -20, 35) import sensor,image,time,gc from pyb import LED from pid import PID from pyb import UART uart = UART(3,115200,bits=8, parity=None, stop=1, timeout_char=2000, read_buf_len=1024) def sending_data(data1): global uart byte_value = data1.to_bytes(1, 'big', True) data = bytearray([0x23, byte_value[0], 0x40]) uart.write(data); rho_pid = PID(p=0.6, i=0, d=0.15) theta_pid = PID(p=0.003, i=0, d=0.002) LED(1).on() LED(2).on() LED(3).on() sensor.reset() sensor.set_vflip(True) sensor.set_hmirror(True) sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QQQVGA) sensor.skip_frames(time = 2000) clock = time.clock() while(True): clock.tick() img = sensor.snapshot().binary([THRESHOLD]) line = img.get_regression([(100,100)], robust = True) if (line): rho_err = abs(line.rho())-img.width()/2 if line.theta()>90: theta_err = line.theta()-180 else: theta_err = line.theta() img.draw_line(line.line(), color = 127) if line.magnitude()>8: rho_output = rho_pid.get_pid(rho_err,1) theta_output = theta_pid.get_pid(theta_err,1) output = rho_output+theta_output sending_data(int(output)) print(int(output)) pass gc.collect()
from pyb import millis from math import pi, isnan class PID: _kp = _ki = _kd = _integrator = _imax = 0 _last_error = _last_derivative = _last_t = 0 _RC = 1/(2 * pi * 20) def __init__(self, p=0, i=0, d=0, imax=0): self._kp = float(p) self._ki = float(i) self._kd = float(d) self._imax = abs(imax) self._last_derivative = float('nan') def get_pid(self, error, scaler): tnow = millis() dt = tnow - self._last_t output = 0 if self._last_t == 0 or dt > 1000: dt = 0 self.reset_I() self._last_t = tnow delta_time = float(dt) / float(1000) output += error * self._kp if abs(self._kd) > 0 and dt > 0: if isnan(self._last_derivative): derivative = 0 self._last_derivative = 0 else: derivative = (error - self._last_error) / delta_time derivative = self._last_derivative + \ ((delta_time / (self._RC + delta_time)) * \ (derivative - self._last_derivative)) self._last_error = error self._last_derivative = derivative output += self._kd * derivative output *= scaler if abs(self._ki) > 0 and dt > 0: self._integrator += (error * self._ki) * scaler * delta_time if self._integrator < -self._imax: self._integrator = -self._imax elif self._integrator > self._imax: self._integrator = self._imax output += self._integrator return output def reset_I(self): self._integrator = 0 self._last_derivative = float('nan') `` ` :crying_face: 求大佬帮帮忙
-
此回复已被删除!