• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • OpenMV神经网络连线调试报错:“ Failed to allocate tensors”?



    • import sensor, image, time, pyb, math, os, ml, uos, gc
      from pyb import UART
      from machine import LED
      from ulab import numpy as np
      
      # 初始化传感器(保持代码一的设置)
      sensor.reset()
      sensor.set_pixformat(sensor.RGB565)
      sensor.set_framesize(sensor.QVGA)
      sensor.set_windowing((240, 240))  # 适配FOMO模型输入
      sensor.skip_frames(time=2000)
      
      clock = time.clock()
      led = LED("LED_BLUE")
      uart = UART(3, 115200)
      
      # 加载神经网络模型(来自代码一)
      net = None
      labels = None
      min_confidence = 0.5
      
      try:
          net = ml.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          raise Exception('Failed to load model: ' + str(e))
      
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load labels: ' + str(e))
      
      # 颜色映射(根据labels.txt顺序)
      colors = [ # Add more colors if you are detecting more than 7 types of classes at once.
          (  0,   0,   0),
          (255, 255, 255),
          (  0,   0, 255),
          (255,   0,   0),
          (255, 255,   0),
          (  0, 255, 255),
          (255, 255, 255),
      ]
      
      threshold_list = [(math.ceil(min_confidence * 255), 255)]
      
      
      
      ###### 神经网络函数 ######
      def fomo_post_process(model, inputs, outputs):
          ob, oh, ow, oc = model.output_shape[0]
      
          x_scale = inputs[0].roi[2] / ow
          y_scale = inputs[0].roi[3] / oh
      
          scale = min(x_scale, y_scale)
      
          x_offset = ((inputs[0].roi[2] - (ow * scale)) / 2) + inputs[0].roi[0]
          y_offset = ((inputs[0].roi[3] - (ow * scale)) / 2) + inputs[0].roi[1]
      
          l = [[] for i in range(oc)]
      
          for i in range(oc):
              img = image.Image(outputs[0][0, :, :, i] * 255)
              blobs = img.find_blobs(
                  threshold_list, x_stride=1, y_stride=1, area_threshold=1, pixels_threshold=1
              )
              for b in blobs:
                  rect = b.rect()
                  x, y, w, h = rect
                  score = (
                      img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
                  )
                  x = int((x * scale) + x_offset)
                  y = int((y * scale) + y_offset)
                  w = int(w * scale)![0_1742222457368_微信图片_20250317224009.png](https://fcdn.singtown.com/f1197d0e-202a-478a-99ce-67919113c2e2.png) 
                  h = int(h * scale)
                  l[i].append((x, y, w, h, score))
          return l
      
      clock = time.clock()
      
      

      Traceback (most recent call last):
      File "", line 25, in
      Exception: Failed to load model: Failed to allocate tensors
      OpenMV v4.5.9; MicroPython v1.23.0-r19; OPENMV4P-STM32H743
      Type "help()" for more information.



    • @oa3p 0_1742222651112_微信图片_20250317224009.png 这是OpenMV内存里的文件



    • 升级一下固件版本



    • @kidswong999 我的固件版本是最新的还是会报错唉0_1742393421657_1f744765-971c-4eaa-996e-d3cc0d61c9f5-image.png



    • 现在最新的版本是4.6.20