• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • AI训练后运行时提示无法加载模型?



    • 我自己在edge implus上训练的模型,我用的MV4,
      0_1728261782766_fbe49da1-6a0a-407b-993f-fa9358a638ae-image.png
      U盘里我也放文件了啊
      0_1728261843654_ccf5f79b-e1d8-4cf6-8519-19ee309ce8ce-image.png
      帮忙看看谢谢,
      一开始训练的模型需加载ml,我看视频教程是tf,后来我就改成了tf

      Edge Impulse - OpenMV FOMO Object Detection Example

      This work is licensed under the MIT license.

      Copyright (c) 2013-2024 OpenMV LLC. All rights reserved.

      https://github.com/openmv/openmv/blob/master/LICENSE

      import sensor, image, time, os, tf,math, uos, gc
      from ulab import numpy as np

      sensor.reset() # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240)) # Set 240x240 window.
      sensor.skip_frames(time=2000) # Let the camera adjust.

      net = None
      labels = None
      min_confidence = 0.5

      try:
      # load the model, alloc the model file on the heap if we have at least 64K free after loading
      net = tf.Model("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
      raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      try:
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
      raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      colors = [ # Add more colors if you are detecting more than 7 types of classes at once.
      (255, 0, 0),
      ( 0, 255, 0),
      (255, 255, 0),
      ( 0, 0, 255),
      (255, 0, 255),
      ( 0, 255, 255),
      (255, 255, 255),
      ]

      threshold_list = [(math.ceil(min_confidence * 255), 255)]

      def fomo_post_process(model, inputs, outputs):
      ob, oh, ow, oc = model.output_shape[0]

      x_scale = inputs[0].roi[2] / ow
      y_scale = inputs[0].roi[3] / oh
      
      scale = min(x_scale, y_scale)
      
      x_offset = ((inputs[0].roi[2] - (ow * scale)) / 2) + inputs[0].roi[0]
      y_offset = ((inputs[0].roi[3] - (ow * scale)) / 2) + inputs[0].roi[1]
      
      l = [[] for i in range(oc)]
      
      for i in range(oc):
          img = image.Image(outputs[0][0, :, :, i] * 255)
          blobs = img.find_blobs(
              threshold_list, x_stride=1, y_stride=1, area_threshold=1, pixels_threshold=1
          )
          for b in blobs:
              rect = b.rect()
              x, y, w, h = rect
              score = (
                  img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
              )
              x = int((x * scale) + x_offset)
              y = int((y * scale) + y_offset)
              w = int(w * scale)
              h = int(h * scale)
              l[i].append((x, y, w, h, score))
      return l
      

      clock = time.clock()
      while(True):
      clock.tick()

      img = sensor.snapshot()
      
      for i, detection_list in enumerate(net.predict([img], callback=fomo_post_process)):
          if i == 0: continue  # background class
          if len(detection_list) == 0: continue  # no detections for this class?
      
          print("********** %s **********" % labels[i])
          for x, y, w, h, score in detection_list:
              center_x = math.floor(x + (w / 2))
              center_y = math.floor(y + (h / 2))
              print(f"x {center_x}\ty {center_y}\tscore {score}")
              img.draw_circle((center_x, center_y, 12), color=colors[i])
      
      print(clock.fps(), "fps", end="\n\n")


    • 代码不对,升级固件,然后用生成的代码。