• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 跟教程在Edge Impulse上训练的模型运行报错



    • 固件信息:

      0_1722924846367_1f014fce-a6e4-4f9b-858a-2d6d8522eaad-image.png

      报错信息:

      0_1722924724228_53e7d8f8-280d-4bb8-9f5e-57ea0a786a2f-image.png

      代码:

      #Edge Impulse - OpenMV Image Classification Example

      import sensor, image, time, os, tf, uos, gc

      sensor.reset() # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240)) # Set 240x240 window.
      sensor.skip_frames(time=2000) # Let the camera adjust.

      net = None
      labels = None

      try:
      # load the model, alloc the model file on the heap if we have at least 64K free after loading
      net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
      print(e)
      raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      try:
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
      raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')

      clock = time.clock()
      while(True):
      clock.tick()

      img = sensor.snapshot()
      
      # default settings just do one detection... change them to search the image...
      for obj in net.classify(img, min_scale=1.0, scale_mul=0.8, x_overlap=0.5, y_overlap=0.5):
          print("**********\nPredictions at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
          img.draw_rectangle(obj.rect())
          # This combines the labels and confidence values into a list of tuples
          predictions_list = list(zip(labels, obj.output()))
      
          for i in range(len(predictions_list)):
              print("%s = %f" % (predictions_list[i][0], predictions_list[i][1]))
      
      print(clock.fps(), "fps")
      

      Edge Impulse训练信息:

      0_1722924941455_755ab6f7-5294-4ab9-baf8-969fa5ade498-image.png



    • 你用的是OpenMV4 H7,不能运行edge impulse上的分类模型,OpenMV4 H7 Plus可以用。

      建议用星瞳AI云服务,可以支持OpenMV4 H7



    • @kidswong999 我这个PLUS也有这个问题啊



    • 我这个新买的Plus也有这个问题,已经把MobileNet设置到资源最小了也不行



    • 版本问题,4.6.0也会出现,回退版本4.5.4就可以了



    • 新的固件,使用下面新的代码:

      
      import sensor
      import time
      import ml
      from ml.utils import NMS
      import math
      import image
      
      sensor.reset()  # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.RGB565)  # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)  # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))  # Set 240x240 window.
      sensor.skip_frames(time=2000)  # Let the camera adjust.
      
      min_confidence = 0.4
      threshold_list = [(math.ceil(min_confidence * 255), 255)]
      
      
      print(model)
      
      model = ml.Model("trained.tflite", load_to_fb=True)
      labels = [line.rstrip('\n') for line in open("labels.txt")]
      
      colors = [  # Add more colors if you are detecting more than 7 types of classes at once.
          (255, 0, 0),
          (0, 255, 0),
          (255, 255, 0),
          (0, 0, 255),
          (255, 0, 255),
          (0, 255, 255),
          (255, 255, 255),
      ]
      
      
      # FOMO outputs an image per class where each pixel in the image is the centroid of the trained
      # object. So, we will get those output images and then run find_blobs() on them to extract the
      # centroids. We will also run get_stats() on the detected blobs to determine their score.
      # The Non-Max-Supression (NMS) object then filters out overlapping detections and maps their
      # position in the output image back to the original input image. The function then returns a
      # list per class which each contain a list of (rect, score) tuples representing the detected
      # objects.
      def fomo_post_process(model, inputs, outputs):
          n, oh, ow, oc = model.output_shape[0]
          nms = NMS(ow, oh, inputs[0].roi)
          for i in range(oc):
              img = image.Image(outputs[0][0, :, :, i] * 255)
              blobs = img.find_blobs(
                  threshold_list, x_stride=1, area_threshold=1, pixels_threshold=1
              )
              for b in blobs:
                  rect = b.rect()
                  x, y, w, h = rect
                  score = (
                      img.get_statistics(thresholds=threshold_list, roi=rect).l_mean() / 255.0
                  )
                  nms.add_bounding_box(x, y, x + w, y + h, score, i)
          return nms.get_bounding_boxes()
      
      
      clock = time.clock()
      while True:
          clock.tick()
      
          img = sensor.snapshot()
      
          for i, detection_list in enumerate(model.predict([img], callback=fomo_post_process)):
              if i == 0:
                  continue  # background class
              if len(detection_list) == 0:
                  continue  # no detections for this class?
      
              print("********** %s **********" % labels[i])
              for (x, y, w, h), score in detection_list:
                  center_x = math.floor(x + (w / 2))
                  center_y = math.floor(y + (h / 2))
                  print(f"x {center_x}\ty {center_y}\tscore {score}")
                  img.draw_circle((center_x, center_y, 12), color=colors[i])
      
          print(clock.fps(), "fps", end="\n")