• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 将模板匹配历程中的灰度改成彩色,会报错,如何修改



    • 0_1722234891360_b6d3a353-a5a2-453b-a842-57f895acef2e-image.png

      Template Matching Example - Normalized Cross Correlation (NCC)

      This example shows off how to use the NCC feature of your OpenMV Cam to match

      image patches to parts of an image... expect for extremely controlled environments

      NCC is not all to useful.

      WARNING: NCC supports needs to be reworked! As of right now this feature needs

      a lot of work to be made into somethin useful. This script will remain to show

      that the functionality exists, but, in its current state is inadequate.

      import time
      import sensor
      import image
      from image import SEARCH_EX

      from image import SEARCH_DS

      Reset sensor

      sensor.reset()#摄像头重置

      Set sensor settings

      sensor.set_contrast(1)#设置对比度
      sensor.set_gainceiling(16)#自动增益

      Max resolution for template matching with SEARCH_EX is QQVGA

      sensor.set_framesize(sensor.QQVGA)#分辨率大小,最大支持QQVGA

      You can set windowing to reduce the search image.

      sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))

      sensor.set_pixformat(sensor.RGB565)#灰度

      Load template.

      Template should be a small (eg. 32x32 pixels) grayscale image.

      #template1 = image.Image("/1.pgm")#模板图片pgm格式
      template4 = image.Image("/4.pgm")#模板图片pgm格式
      template5 = image.Image("/5.pgm")#模板图片pgm格式

      clock = time.clock()

      Run template matching

      while True:
      clock.tick()
      img = sensor.snapshot()

      # find_template(template, threshold, [roi, step, search])
      # ROI: The region of interest tuple (x, y, w, h).
      # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
      # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
      #
      # Note1: ROI has to be smaller than the image and bigger than the template.
      # Note2: In diamond search, step and ROI are both ignored.
      """
      r1 = img.find_template(#调用模板匹配函数
          template1, 0.70, step=4, search=SEARCH_EX
      )  # , roi=(10, 0, 60, 60))#template图片,0.7匹配阈值,roi设置了是在规定区域寻找图像,不设置了默认整个区域寻找
      if r1:#如果找到模板图片
          img.draw_rectangle(r1,color=(0,0,0))
      """
      
      r4 = img.find_template(#调用模板匹配函数
          template4, 0.70, step=4, search=SEARCH_EX
      )  # , roi=(10, 0, 60, 60))#template图片,0.7匹配阈值,roi设置了是在规定区域寻找图像,不设置了默认整个区域寻找
      if r4:#如果找到模板图片
          img.draw_rectangle(r4,color=(255,0,0))
      
      
      r5 = img.find_template(#调用模板匹配函数
          template5, 0.70, step=4, search=SEARCH_EX
      )  # , roi=(10, 0, 60, 60))#template图片,0.7匹配阈值,roi设置了是在规定区域寻找图像,不设置了默认整个区域寻找
      if r5:#如果找到模板图片
          img.draw_rectangle(r5,color=(0,0,0))
      
      print(clock.fps())


    • 加一句img.to_grayscale()