• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 原先正常的代码,固件更新后95行报错extra positional arguments given



    • import sensor, image, time, os, tf, math, uos, gc
      import json
      from pyb import UART
      from pyb import Pin, Timer
      light = Timer(2, freq=50000).channel(1, Timer.PWM, pin=Pin("P6"))    #灯光基础参数引脚,频率,pwm(不用改)
      light.pulse_width_percent(10)                                        #亮度
      sensor.reset()                                 #复位和初始化传感器
      sensor.set_pixformat(sensor.RGB565)            #设置像素格式为RGB565(或GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)              #设置帧大小为QVGA (320x240)
      sensor.set_windowing((320, 240))               #设置320x240窗口
      sensor.skip_frames(time=2000)                  #让相机调整一下。
      uart = UART(3, 115200)                         #串口3,波特率115200
      net = None
      labels = None
      min_confidence = 0.5                           #最小置信度(区分识别物与背景)!!!不知道别改
      #以下为空定义,防止报错
      mjzb=''
      xzb=''
      yzb=''
      rect_area=0
      center_x=0
      center_y=0
      blobs=0
      str1="A雄"
      str2="B雄"
      str3="A雌"
      str4="B雌"
      
      left_roi = [0,0,320,240]
      
      try:#加载模型,在堆上分配模型文件,如果加载后我们至少有64K的空闲空间
          net = tf.load("trained.tflite", load_to_fb=uos.stat('trained.tflite')[6] > (gc.mem_free() - (64*1024)))
      except Exception as e:
          raise Exception('Failed to load "trained.tflite", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      try:
          labels = [line.rstrip('\n') for line in open("labels.txt")]
      except Exception as e:
          raise Exception('Failed to load "labels.txt", did you copy the .tflite and labels.txt file onto the mass-storage device? (' + str(e) + ')')
      yellow_thresholdA = (76, 99, -25, 83, 35, 111)     #色块追踪颜色阈值,可根据环境光不同修改,参数在tools-machine vision-threshold editor
      #yellow_thresholdB = (34,85,-48,77,-8,87)
      yellow_thresholdC = (100, 61, -105, 127, 35, 88)
      white_threshold = (28, 33, -89, 127, -128, -58)   #识别方框的颜色阈值
      pixel_size_mm = 0.1 / 25                          #0.1mm\25像素点
      colors = [
                (255,   0,   0),#RED
                (  0, 255,   0),#GREEN
                (255, 255,   0),#YELLOW
                (  0,   0, 255),#BLUE
                (255,   0, 255),#PINK
                (  0, 255, 255),#CYAN
                (255, 255, 255),#WHITE
      ]                                                 #如果你同时检测到7种以上的类,添加更多的颜色。
      clock = time.clock()
      sj=9
      def modified_data(data):                          #整型函数,将返回主控板的面积整型为四位数(根据手眼协调函数修改)
         data = int(data)
         str_data=''
         if data < 10:
             str_data = str_data + '000' + str(data)
         elif data >= 10 and data < 100:
             str_data = str_data + '00' + str(data)
         elif data >=100 and data <1000:
             str_data = str_data + '0' + str(data)
         else:
             str_data = str_data + str(data)
         return str_data.encode('utf-8')                #返回编码通用转换格式
      
      
      while(True):
          clock.tick()
          img = sensor.snapshot()#.lens_corr(1.8)
          for i, detection_list in enumerate(net.detect(img, thresholds=[(math.ceil(min_confidence * 255), 255)])):
              if (i == 0): continue
              if (len(detection_list) == 0): continue
              #print(labels[i])
              for d in detection_list:
                  [x, y, w, h] = d.rect()
                  center_x = math.floor(x + (w / 2))
                  center_y = math.floor(y + (h / 2))
                  xzb = modified_data(center_x)
                  yzb = modified_data(center_y)
                  img.draw_circle((center_x, center_y, 8), color=(0,0,0), thickness=2)
      
                  print('识别到%s' % labels[i])
                  if labels[i]== 'B雄' or labels[i]== 'A雄' :
                      print('这是雄花')
                      rect_area=0
                      break
                  elif labels[i]== 'A雌' or labels[i]== 'B雌' :
                      blobs = img.find_blobs([yellow_thresholdA,yellow_thresholdC])
                      if blobs:
                          largest_blob = max(blobs, key = lambda b: b.pixels())
                          rect = largest_blob.rect()
                          img.draw_rectangle(rect, color = (0,0,255))
                          white_region = img.crop(rect).find_blobs([white_threshold], pixels_threshold=100)
                          if white_region:
                              largest_white_region = max(white_region, key = lambda b: b.pixels())
                              rect_area = largest_white_region.pixels()
                              img.draw_rectangle(largest_white_region.rect(), color = (0, 0, 255))
                              mjzb = modified_data(rect_area)
                              print('*******')
                              uart.write('st')
                              uart.write(xzb)
                              uart.write(yzb)
                              uart.write(mjzb)
                              print('x==%d\ty==%d\tmj==%d' % (center_x, center_y, 10*rect_area))
                              print(xzb, yzb, mjzb)
                              print('这是%s\n' % labels[i])
                              time.sleep(0.15)
      
      

      0_1720577542797_微信图片_20240710101159.png



    • 我没有运行出错误,你能把模型上传吗?