• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • Wifi模块自建热点之后只有一台设备能连接,应该如何解决 ?



    • Face recognition with LBP descriptors.

      See Timo Ahonen's "Face Recognition with Local Binary Patterns".

      Before running the example:

      1) Download the AT&T faces database http://www.cl.cam.ac.uk/Research/DTG/attarchive/pub/data/att_faces.zip

      2) Exract and copy the orl_faces directory to the SD card root.

      import sensor, time, image, pyb
      import network, usocket, json

      Wi-fi和服务器配置

      SSID = 'OPENMV_AP' # Network SSID
      KEY = '1234567890' # Network key (must be 10 chars)
      HOST = '192.168.1.100' # Use first available interface
      PORT = 5000 # Arbitrary non-privileged port

      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
      sensor.set_framesize(sensor.B128X128) # or sensor.QQVGA (or others)
      sensor.set_windowing((92,112))
      sensor.set_contrast(3)
      sensor.set_gainceiling(16)
      sensor.skip_frames(10) # Let new settings take affect.
      sensor.skip_frames(time = 5000) #等待5s

      初始化AP模块

      wlan = network.WINC(mode=network.WINC.MODE_AP)
      wlan.start_ap(SSID, key=KEY, security=wlan.WPA2, channel=2)

      加载Haar算子

      默认情况下,这将使用所有阶段,更低的satges更快,但不太准确。

      face_cascade = image.HaarCascade("frontalface", stages=25)

      print(face_cascade)

      FPS clock

      clock = time.clock()

      #SUB = "s1"
      NUM_SUBJECTS = 5 #图像库中不同人数,一共6人
      NUM_SUBJECTS_IMGS = 20 #每人有20张样本图片

      def min(pmin, a, s):
      global num
      if a<pmin:
      pmin=a
      num=s
      return pmin

      id-摄像头标号 userId-识别到的用户id

      def send_data_to_server(id,userId):
      # Create a socket to connect to the server
      s = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
      try:
      s.connect((HOST, PORT))
      # Create the JSON payload with id and user_id
      payload = json.dumps({"id":str(id),"userId":str(userId)})
      # Send the POST request to the server with the specific path and data
      s.send("POST /openmv/receive HTTP/1.0\r\n")
      s.send("Content-Type: application/json\r\n")
      s.send("Content-Length: {}\r\n\r\n".format(len(payload)))
      s.send(payload)
      s.close()
      except OSError as e:
      print("Failed to connect to server:", e)

      while(True):
      # 拍摄当前人脸。
      img = sensor.snapshot()
      objects = img.find_features(face_cascade, threshold=0.75, scale=1.35)
      #img = image.Image("singtown/%s/1.pgm"%(SUB))
      for r in objects:
      img.draw_rectangle(r)
      d0 = img.find_lbp((0, 0, img.width(), img.height()))
      #d0为当前人脸的lbp特征
      img = None
      pmin = 999999
      num=0
      for s in range(1, NUM_SUBJECTS+1):
      dist = 0
      for i in range(2, NUM_SUBJECTS_IMGS+1):
      img = image.Image("singtown/s%d/%d.pgm"%(s, i))
      d1 = img.find_lbp((0, 0, img.width(), img.height()))
      #d1为第s文件夹中的第i张图片的lbp特征
      dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
      pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。

              print(num) # num为当前最匹配的人的编号
              send_data_to_server(1,num)# 将匹配到的人脸发送给服务器
              sensor.skip_frames(time = 3000)


    • 你好,你那边wifi模块能进行openmv无线调试吗,我连上wifi后电脑软件没有wifi的图标



    • WiFi扩展板热点模式只能连接一个设备。这个是硬件限制的,解决不了。