• OpenMV VSCode 扩展发布了,在插件市场直接搜索OpenMV就可以安装
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • 怎样将摄像头光线调亮(感觉是程序的问题)



    • import sensor, image, time, math,lcd
      from pyb import UART

      Tracks a black line. Use [(128, 255)] for a tracking a white line.

      #GRAYSCALE_THRESHOLD = [(0, 77)]
      #设置阈值,如果是黑线,GRAYSCALE_THRESHOLD = [(0, 64)];
      #如果是白线,GRAYSCALE_THRESHOLD = [(128,255)]
      red_threshold = [(28, 100, -40, 88, 77, 10)] # L A B(19, 97, -47, 30, -22, 6)

      Each roi is (x, y, w, h). The line detection algorithm will try to find the

      centroid of the largest blob in each roi. The x position of the centroids

      will then be averaged with different weights where the most weight is assigned

      to the roi near the bottom of the image and less to the next roi and so on.

      ROIS = [ # [ROI, weight]
      (0, 060, 160, 20, 0.7), # You'll need to tweak the weights for you app
      #(0, 050, 160, 20, 0.3), # depending on how your robot is setup.
      (0, 030, 160, 20, 0.1)
      ]
      #roi代表三个取样区域,(x,y,w,h,weight),代表左上顶点(x,y)宽高分别为w和h的矩形,
      #weight为当前矩形的权值。注意本例程采用的QQVGA图像大小为160x120,roi即把图像横分成三个矩形。
      #三个矩形的阈值要根据实际情况进行调整,离机器人视野最近的矩形权值要最大,
      #如上图的最下方的矩形,即(0, 100, 160, 20, 0.7)

      Compute the weight divisor (we're computing this so you don't have to make weights add to 1).

      weight_sum = 0 #权值和初始化
      for r in ROIS: weight_sum += r[4] # r[4] is the roi weight.
      #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。

      Camera setup...

      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.RGB565) # use grayscale.
      sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed.
      #sensor.skip_frames(500) # Let new settings take affect.
      sensor.set_auto_gain(False) # must be turned off for color tracking
      sensor.set_auto_whitebal(False) # must be turned off for color tracking
      #关闭白平衡
      uart = UART(3, 9600)
      clock = time.clock() # Tracks FPS.
      lcd.init()
      Left = 'L'
      Right = 'R'
      Go = 'Q'

      #def find_max(blobs):
      #max_size=0
      #for blob in blobs:
      #if blob[2]*blob[3] > max_size:
      #max_blob=blob
      #max_size = blob[2]*blob[3]
      #return max_blob

      while(True):
      clock.tick() # Track elapsed milliseconds between snapshots().
      img = sensor.snapshot() # Take a picture and return the image.

      centroid_sum = 0
      #利用颜色识别分别寻找三个矩形区域内的线段
      for r in ROIS:
          blobs = img.find_blobs(red_threshold, roi=r[0:4], merge=True)
          # r[0:4] is roi tuple.
          #找到视野中的线,merge=true,将找到的图像区域合并成一个
      
          #目标区域找到直线
          if blobs:
              # Find the index of the blob with the most pixels.
              most_pixels = 0
              largest_blob = 0
              for i in range(len(blobs)):
              #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线
                  if blobs[i].pixels() > most_pixels:
                      most_pixels = blobs[i].pixels()
                      #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于                     #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob
                      largest_blob = i
      
              # Draw a rect around the blob.
              img.draw_rectangle(blobs[largest_blob].rect())
              #将此区域的像素数最大的颜色块画矩形和十字形标记出来
              img.draw_cross(blobs[largest_blob].cx(),
                             blobs[largest_blob].cy())
      
              centroid_sum += blobs[largest_blob].cx() * r[4] # r[4] is the roi weight.
              #计算centroid_sum,centroid_sum等于每个区域的最大颜色块的中心点的x坐标值乘本区域的权值
      
      center_pos = (centroid_sum / weight_sum) # Determine center of line.
      #中间公式
      
      # Convert the center_pos to a deflection angle. We're using a non-linear
      # operation so that the response gets stronger the farther off the line we
      # are. Non-linear operations are good to use on the output of algorithms
      # like this to cause a response "trigger".
      deflection_angle = 0
      #机器人应该转的角度
      
      # The 80 is from half the X res, the 60 is from half the Y res. The
      # equation below is just computing the angle of a triangle where the
      # opposite side of the triangle is the deviation of the center position
      # from the center and the adjacent side is half the Y res. This limits
      # the angle output to around -45 to 45. (It's not quite -45 and 45).
      deflection_angle = -math.atan((center_pos-80)/60)
      #角度计算.80 60 分别为图像宽和高的一半,图像大小为QQVGA 160x120.
      #注意计算得到的是弧度值
      
      # Convert angle in radians to degrees.
      deflection_angle = math.degrees(deflection_angle)
      
      img.draw_string(20, 10, "%.2f"%deflection_angle)
      lcd.display(img)
      #将计算结果的弧度值转化为角度值
      if uart.any():
          if (uart.readchar() == ord('K')):
              #uart.write("A")
      
              if  (deflection_angle > 30 and deflection_angle < 53.130102):
                  uart.write(Left)
                  #print("Left:%f" % deflection_angle)
      
              elif (deflection_angle > -30 and deflection_angle < 30):
                  uart.write(Go)
                  #print("Go:%f" % deflection_angle)
      
              elif deflection_angle < -30:
                  uart.write(Right)
                  #print("Right:%f" % deflection_angle)
              if deflection_angle == 53.130102 :
                   uart.write(Right)
      
      
      # Now you have an angle telling you how much to turn the robot by which
      # incorporates the part of the line nearest to the robot and parts of
      # the line farther away from the robot for a better prediction.
      print("Turn Angle: %f" % deflection_angle)
      
      
      #将结果打印在terminal中
      
      print(clock.fps())