为什么我跑mnist的例程代码,识别精确度这么低?我已经把trained.tflite拷贝好了
-
# This code run in OpenMV4 H7 or OpenMV4 H7 Plus import sensor, image, time, os, tf sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. clock = time.clock() while(True): clock.tick() img = sensor.snapshot().binary([(0,64)]) for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0): output = obj.output() number = output.index(max(output)) print(number) print(clock.fps(), "fps")
-
@cgti 为什么?