导航

    • 登录
    • 搜索
    • 版块
    • 产品
    • 教程
    • 论坛
    • 淘宝
    1. 主页
    2. cgti
    C
    • 举报资料
    • 资料
    • 关注
    • 粉丝
    • 屏蔽
    • 帖子
    • 楼层
    • 最佳
    • 群组

    cgti

    @cgti

    0
    声望
    3
    楼层
    406
    资料浏览
    0
    粉丝
    0
    关注
    注册时间 最后登录

    cgti 关注

    cgti 发布的帖子

    • 为什么跑mnist例程的代码,正确率这么低

      0_1689860406113_89e15dd9-2788-47ca-8eee-a4befcd70dd6-image.png
      0_1689860476375_9c22498a-50e2-4d12-8fe6-70fbea1fa9f4-image.png

      请在这里粘贴代码
      
      # This code run in OpenMV4 H7 or OpenMV4 H7 Plus
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      clock = time.clock()
      while(True):
          clock.tick()
          img = sensor.snapshot().binary([(0,64)])
          for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
              output = obj.output()
              number = output.index(max(output))
              print(number)
          print(clock.fps(), "fps")
      
      
      发布在 OpenMV Cam
      C
      cgti
    • RE: 为什么我跑mnist的例程代码,识别精确度这么低?我已经把trained.tflite拷贝好了

      @cgti 为什么?

      发布在 OpenMV Cam
      C
      cgti
    • 为什么我跑mnist的例程代码,识别精确度这么低?我已经把trained.tflite拷贝好了
      # This code run in OpenMV4 H7 or OpenMV4 H7 Plus
      
      import sensor, image, time, os, tf
      
      sensor.reset()                         # Reset and initialize the sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)    # Set pixel format to RGB565 (or GRAYSCALE)
      sensor.set_framesize(sensor.QVGA)      # Set frame size to QVGA (320x240)
      sensor.set_windowing((240, 240))       # Set 240x240 window.
      sensor.skip_frames(time=2000)          # Let the camera adjust.
      
      clock = time.clock()
      while(True):
          clock.tick()
          img = sensor.snapshot().binary([(0,64)])
          for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
              output = obj.output()
              number = output.index(max(output))
              print(number)
          print(clock.fps(), "fps")
      
      

      0_1689860812109_36de803c-5e25-40ce-a394-d7da7d0c5df9-image.png
      0_1689860823425_1dcb1259-6038-4819-ba6f-42bd2448c434-image.png

      发布在 OpenMV Cam
      C
      cgti