• 免费好用的星瞳AI云服务上线!简单标注,云端训练,支持OpenMV H7和OpenMV H7 Plus。可以替代edge impulse。 https://forum.singtown.com/topic/9519
  • 我们只解决官方正版的OpenMV的问题(STM32),其他的分支有很多兼容问题,我们无法解决。
  • 如果有产品硬件故障问题,比如无法开机,论坛很难解决。可以直接找售后维修
  • 发帖子之前,请确认看过所有的视频教程,https://singtown.com/learn/ 和所有的上手教程http://book.openmv.cc/
  • 每一个新的提问,单独发一个新帖子
  • 帖子需要目的,你要做什么?
  • 如果涉及代码,需要报错提示全部代码文本,请注意不要贴代码图片
  • 必看:玩转星瞳论坛了解一下图片上传,代码格式等问题。
  • snapshot时osError:failed to write requested bytes



    • 0_1538809874735_IMG_20181006_145934.png
      SD卡已插入。
      请问是什么原因造成的?



    • OpenMV 要在开机之前插入SD卡



    • 补充:代码为snapshot的例程



    • 请发具体的代码,图片不要用手机拍,根本看不清。



    • import sensor, image, pyb
      
      RED_LED_PIN = 1
      BLUE_LED_PIN = 3
      
      sensor.reset() # Initialize the camera sensor.
      sensor.set_pixformat(sensor.GRAYSCALE)
      sensor.set_framesize(sensor.HQVGA) # or sensor.QQVGA (or others)
      sensor.skip_frames(time = 2000) # Let new settings take affect.
      
      # Load up a face detection HaarCascade. This is object that your OpenMV Cam
      # can use to detect faces using the find_features() method below. Your OpenMV
      # Cam has fontalface HaarCascade built-in. By default, all the stages of the
      # HaarCascade are loaded. However, You can adjust the number of stages to speed
      # up processing at the expense of accuracy. The frontalface HaarCascade has 25
      # stages.
      face_cascade = image.HaarCascade("frontalface", stages=25)
      
      while(True):
      
          pyb.LED(RED_LED_PIN).on()
          print("About to start detecting faces...")
          sensor.skip_frames(time = 2000) # Give the user time to get ready.
      
          pyb.LED(RED_LED_PIN).off()
          print("Now detecting faces!")
          pyb.LED(BLUE_LED_PIN).on()
      
          diff = 10 # We'll say we detected a face after 10 frames.
          while(diff):
              img = sensor.snapshot()
              # Threshold can be between 0.0 and 1.0. A higher threshold results in a
              # higher detection rate with more false positives. The scale value
              # controls the matching scale allowing you to detect smaller faces.
              faces = img.find_features(face_cascade, threshold=0.5, scale_factor=1.5)
      
              if faces:
                  diff -= 1
                  for r in faces:
                      img.draw_rectangle(r)
      
          pyb.LED(BLUE_LED_PIN).off()
          print("Face detected! Saving image...")
          sensor.snapshot().save("snapshot-%d.jpg" % pyb.rng()) # Save Pic.
      
      前面运行正常,能框出人脸,最后一步报错,报错内容见标题
      


    • @kidswong999 谢谢指导!前面试了一下,把电脑关机后我先插了SD卡,然后开电脑,最后连硬件,但问题依然存在,请问我的顺序正确吗?



    • 是先插SD卡,然后把OpenMV 插入电脑。然后在IDE里运行代码。



    • 问题解决了,非常感谢!